Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 8,
  • pp. 1927-1937
  • (2017)

Classification of Ciprofloxacin Tablets Using Near-Infrared Spectroscopy and Chemometric Modeling

Not Accessible

Your library or personal account may give you access


Exposure to unknown, mislabeled, and counterfeit pharmaceutical products is a worldwide problem that presents a serious risk to public health. Near-infrared (NIR) spectroscopy can serve as a useful tool for screening pharmaceuticals in a rapid and cost-effective manner to ensure that drug products are safe and effective. By applying chemometric techniques to NIR spectra from finished products in tablet form, minor spectral differences are discoverable, even in instances where the tablets being evaluated contain the same active pharmaceutical ingredients (APIs). Differences in NIR spectra can occur as a result of various factors including the types and quantities of pharmaceutical excipients used to generate the product and associated manufacturing site process variables. In this study, variability in the NIR spectra of intact tablets with the same API was evaluated using an unsupervised chemometric technique in the form of hierarchical cluster analysis (HCA) on a data set consisting of NIR spectra from more than 800 ciprofloxacin tablets from six manufacturers. Results obtained from HCA and squared Euclidean distance measurements indicate the largest dissimilarities in NIR spectra occur between manufacturers. Based on these findings, a quadratic discriminant analysis (QDA) model was built following dimensionality reduction by principal component analysis for the purpose of predicting the origin of ciprofloxacin tablets. Using QDA, we were able to correctly classify a collection of 907 tablets with greater than 96% accuracy. Chemometric models such as the one developed here could ultimately be employed as part of a large, diversified drug surveillance program.

© 2017 The Author(s)

PDF Article
More Like This
Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

Yongni Shao, Yong He, and Xingyue Hu
Appl. Opt. 46(34) 8379-8384 (2007)

Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures

Artur Carnicer, Oriol Arteaga, Josep M. Suñé-Negre, and Bahram Javidi
Opt. Lett. 41(19) 4507-4510 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved