Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 8,
  • pp. 1954-1961
  • (2017)

Prediction of Cortisol and Progesterone Concentrations in Cow Hair Using Near-Infrared Reflectance Spectroscopy (NIRS)

Not Accessible

Your library or personal account may give you access


Concentrations of different steroid hormones have been used in cows as a measure of adrenal or gonadal activity and, thus, as indicators of stress or reproductive state. Detecting cortisol and progesterone in cow hair provides a long-term integrative value of retrospective adrenal or gonadal/placental activity, respectively. Current techniques for steroid detection require a hormone-extraction procedure that involves time, several types of equipment, management of reagents, and some assay procedures (which can also be time-consuming and can destroy the samples). In contrast, near-infrared reflectance spectroscopy (NIRS) is a multi-component predictor technique, characterized as rapid, nondestructive for the sample, and reagent-free. However, as a predictor technique, NIRS needs to be calibrated and validated for each matrix, hormone, and species. The main objective of this study was to evaluate the predictive value of the NIRS technique for hair cortisol and progesterone quantification in cows by using specific enzyme immunoassay as a reference method. Hair samples from 52 adult Friesian lactating cows from a commercial dairy farm were used. Reflectance spectra of hair samples were determined with a NIR reflectance spectrophotometer before and after trimming them. Although similar results were obtained, a slightly better relationship between the reference data and NIRS predicted values was found using trimmed samples. Near infrared reflectance spectroscopy demonstrated its ability to predict cortisol and progesterone concentrations with certain accuracy (R2 = 0.90 for cortisol and R2 = 0.87 for progesterone). Although NIRS is far from being a complete alternative to current methodologies, the proposed equations can offer screening capability. Considering the advantages of both fields, our results open the possibility for future work on the combination of hair steroid measurement and NIRS methodology.

© 2017 The Author(s)

PDF Article
More Like This
Spatial mapping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy

Isaac O. Afara, Hayley Moody, Sanjleena Singh, Indira Prasadam, and Adekunle Oloyede
Biomed. Opt. Express 6(1) 144-154 (2015)

Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy

Héloïse Auger, Louis Bherer, Étienne Boucher, Richard Hoge, Frédéric Lesage, and Mathieu Dehaes
Biomed. Opt. Express 7(10) 3826-3842 (2016)

Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS)

Chang-Hwan Im, Young-Jin Jung, Seungduk Lee, Dalkwon Koh, Do-Won Kim, and Beop-Min Kim
Opt. Express 18(6) 5730-5739 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved