Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 8,
  • pp. 2001-2012
  • (2017)

Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS)

Not Accessible

Your library or personal account may give you access


The building of multivariate calibration models using near-infrared spectroscopy (NIR) and partial least squares (PLS) to estimate the lignin content in different parts of sugarcane genotypes is presented. Laboratory analyses were performed to determine the lignin content using the Klason method. The independent variables were obtained from different materials: dry bagasse, bagasse-with-juice, leaf, and stalk. The NIR spectra in the range of 10 000–4000 cm−1 were obtained directly for each material. The models were built using PLS regression, and different algorithms for variable selection were tested and compared: iPLS, biPLS, genetic algorithm (GA), and the ordered predictors selection method (OPS). The best models were obtained by feature selection with the OPS algorithm. The values of the root mean square error prediction (RMSEP), correlation of prediction (RP), and ratio of performance to deviation (RPD) were, respectively, for dry bagasse equal to 0.85, 0.97, and 2.87; for bagasse-with-juice equal to 0.65, 0.94, and 2.77; for leaf equal to 0.58, 0.96, and 2.56; for the middle stalk equal to 0.61, 0.95, and 3.24; and for the top stalk equal to 0.58, 0.96, and 2.34. The OPS algorithm selected fewer variables, with greater predictive capacity. All the models are reliable, with high accuracy for predicting lignin in sugarcane, and significantly reduce the time to perform the analysis, the cost and the chemical reagent consumption, thus optimizing the entire process. In general, the future application of these models will have a positive impact on the biofuels industry, where there is a need for rapid decision-making regarding clone production and genetic breeding program.

© 2017 The Author(s)

PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Rapid detection of talc content in flour based on near-infrared spectroscopy combined with feature wavelength selection

Changhao Bao, Changhao Zeng, Jinming Liu, and Dongjie Zhang
Appl. Opt. 61(19) 5790-5798 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription

Select as filters

Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved