Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 72,
  • Issue 12,
  • pp. 1781-1789
  • (2018)

Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectromicroscopy Using Synchrotron Radiation and Micromachined Silicon Wafers for Microfluidic Applications

Not Accessible

Your library or personal account may give you access

Abstract

A custom-designed optical configuration compatible with the use of micromachined multigroove internal reflection elements (μ-groove IREs) for attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and imaging applications in microfluidic devices is described. The μ-groove IREs consist of several face-angled grooves etched into a single, monolithic silicon chip. The optical configuration permits individual grooves to be addressed by focusing synchrotron sourced IR light through a 150 µm pinhole aperture, restricting the beam spot size to a dimension smaller than that of the groove walls. The effective beam spot diameter at the ATR sampling plane is determined through deconvolution of the measured detector response and found to be 70 µm. The μ-groove IREs are highly compatible with standard photolithographic techniques as demonstrated by printing a 400 µm wide channel in an SU-8 film spin-coated on the IRE surface. Attenuated total reflection FT-IR mapping as a function of sample position across the channel illustrates the potential application of this approach for rapid prototyping of microfluidic devices.

© 2018 The Author(s)

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved