Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 72,
  • Issue 9,
  • pp. 1354-1361
  • (2018)

Understanding the Interaction Between Oligopeptide and Water in Aqueous Solution Using Temperature-Dependent Near-Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Investigating the interaction between oligopeptide and water is essential for understanding the structure, dynamics and function of proteins. Temperature-dependent near-infrared (NIR) spectroscopy and independent component analysis (ICA) were employed to study the interaction between oligopeptide and water in aqueous solution. The NIR spectra of two homo-oligopeptides, penta-aspartic acid (D5) and penta-lysine (K5), in aqueous solution of different concentration were measured at different temperature (30–90°C). Independent component analysis was performed to extract the spectral information that changes with temperature. The independent components (ICs) representing the spectral information of NH and CH2 groups were obtained. Compared with D5, the two groups in K5 change significantly at higher temperature. The result may suggest that K5 has stronger interaction with water than D5. Moreover, three ICs that contain the spectral information of the water species with no (S0), one (S1), and two (S2) hydrogen-bonds were obtained. It was shown that the spectral intensity of S0 and S1 increases while that of S2 decreases with the temperature, and the changes of oligopeptide solutions are weaker than those of pure water. The results indicate that water structure is sensitive to temperature and the oligopeptide in aqueous solution improves the thermal stability of the water species. When oligopeptide is added, the spectral intensity of S0 and S2 decreases and that of S1 increases for D5 solution, but the intensity of all the three species decreases for K5 solution. Furthermore, the concentration effect of K5 was found to be stronger than D5. The result may reveal that D5 combines with water molecule through forming one hydrogen bond but K5 interacts with water through a different way.

© 2018 The Author(s)

PDF Article
More Like This
Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy

Naoto Kakuta, Hidenobu Arimoto, Hideyuki Momoki, Fuguo Li, and Yukio Yamada
Appl. Opt. 47(13) 2227-2233 (2008)

Infrared Spectroscopy of Biologic Materials in Aqueous Solutions

E. R. Blout and H. Lenormant
J. Opt. Soc. Am. 43(11) 1093-1095 (1953)

Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

W. Scott Pegau, Deric Gray, and J. Ronald V. Zaneveld
Appl. Opt. 36(24) 6035-6046 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.