Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 73,
  • Issue 8,
  • pp. 870-878
  • (2019)

Solid Sampling in Analysis of Various Plants Using Two-Jet Plasma Atomic Emission Spectrometry

Not Accessible

Your library or personal account may give you access

Abstract

The possibility of two-jet plasma atomic emission spectrometry for analysis of different plants using solid sample preparation and unified calibration samples was investigated. The certified reference materials of wheat, maize, rice, potato, grass mix, birch leaves, and Elodea canadensis were used for analysis. On the basis of the behavior of these plants in the plasma, they were divided into two groups: starch-containing materials (cereal and root crops) and leaves/grass. It was found that the previous sample carbonization should be used for analysis of starch-containing plants while leaves and grass could be analyzed by the direct technique. Carbonization was only applied for determining low concentrations of trace elements in leaves and grass. The calibration samples based on graphite powder and simple sample preparation, dilution of powdered sample with a spectroscopic buffer, were used for both direct analysis and analysis after carbonization. Such an approach allowed estimation of B, Ba, Be, Cd, Co, Cr, Cu, Ga, Fe, Mn, Ni, Pb, Si, Sr, V, and Zn in different plants. The limits of detection (LODs) provided by the direct technique were at the level of (µg·g−1): n × 0.1 for Cd, Cu, and Mn; n for B, Ba, Co, Cr, Fe, Ga, Ni, Pb, Sr, V, and Zn; n × 10 for Si. Carbonization allowed improving LODs of elements several times depending on the thermal stability and mineral composition of plants. The LODs of elements in plants obtained after carbonization are the following (µg·g−1): n × 0.01 for Be, Cd, Cu, and Mn; n × 0.1 for Co, Cr, Fe, Ga, Ni, Pb, Sr, V, Zn; and n for Si. The techniques suggested are fast, easily workable, and do not require harmful chemical reagents. In some cases, the influence of variable matrices and different element species on analytical signal of elements was not completely suppressed; the deviation of element concentrations from the true values was discussed.

© 2019 The Author(s)

PDF Article
More Like This
Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

Madhavi Z. Martin, Arthur J. Stewart, Kimberley D. Gwinn, and John C. Waller
Appl. Opt. 49(13) C161-C167 (2010)

On-line quantitative analysis of heavy metals in water based on laser-induced breakdown spectroscopy

N. J. Zhao, D. S. Meng, Y. Jia, M. J. Ma, L. Fang, J. G. Liu, and W. Q. Liu
Opt. Express 27(8) A495-A506 (2019)

Analysis of material collected on swipes using laser-induced breakdown spectroscopy

Rosemarie Chinni, David A. Cremers, and Rosalie Multari
Appl. Opt. 49(13) C143-C152 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.