Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 75,
  • Issue 2,
  • pp. 145-155
  • (2021)

Temperature-Induced Chemical Changes in Lubricant Automotive Oils Evaluated Using Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Automotive engine lubricating oils are not only intended to reduce friction between parts, but also act on the cooling of motor components and protection of metals against corrosion. To improve its properties and efficiency, additives are added to the base oil for different goals. However, over time of use, external factors modify its properties, such as the engine operating temperature, the frictional force between parts, the mixture of this oil with fuel before burning and with combustion products, causing loss of their efficiency. This work aimed to evaluate, with Raman spectroscopy technique, the temperature-induced changes related to degradation of mineral, semi-synthetic and synthetic automotive lubricating oils. Samples being subject to periodic heating cycle were kept to average temperature of 133°, considering 8 h per day, for six days, until complete 48 h of heating. By analyzing the Raman spectra, it was possible to identify common peaks between the three types of oils and changes caused by heating cycles. Principal components analysis showed that the synthetic oil degraded in less extent than the semi-synthetic one, and this one degraded less than the mineral oil. Spectral models to predict the heating time based on the spectral variations identified using principal components analysis and the regression done using partial least squares, using the heating time as independent variable and the spectral features as dependent variables, was able to predict the heating time for each of oil types with high correlation and prediction error (r > 0.97 and error <4.0 h) for both principal components analysis and partial least squares regression models. Raman technique was able to identify chemical changes resulting from the heating of lubricant oils and to correlate these changes with the heating time, thus becoming a technique of interest for the preventive maintenance area.

© 2020 The Author(s)

PDF Article
More Like This
Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy

H. Khoshroo, H. Khadem, M. Bahreini, S. H. Tavassoli, and J. Hadian
Appl. Opt. 54(32) 9533-9539 (2015)

Identification and quantification of vegetable oil adulteration with waste frying oil by laser-induced fluorescence spectroscopy

Shiguo Hao, Lian Zhu, Ronglong Sui, Mengling Zuo, Ningning Luo, Jiulin Shi, Weiwei Zhang, Xingdao He, and Zhongping Chen
OSA Continuum 2(4) 1148-1154 (2019)

Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy

Toshihiro Somekawa, Makoto Kasaoka, Fumio Kawachi, Yoshitomo Nagano, Masayuki Fujita, and Yasukazu Izawa
Opt. Lett. 38(7) 1086-1088 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.