Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Novel Method for High-Spatial-Resolution Chemical Analysis of Buried Polymer-Metal Interface: Atomic Force Microscopy-Infrared (AFM-IR) Spectroscopy with Low-Angle Microtomy

Not Accessible

Your library or personal account may give you access

Abstract

There is a great need for the analysis of the chemical composition, structure, functional groups, and interactions at polymer-metal interfaces in terms of adhesion, corrosion, and insulation. Although atomic force microscopy-based infrared (AFM-IR) spectroscopy can provide chemical analysis with nanoscale spatial resolution, it generally requires to thin a sample to be placed on a substrate that has low absorption of infrared light and high thermal conductivity, which is often difficult for samples that contain hard materials such as metals. This study demonstrates that the combination of AFM-IR with low-angle microtomy (LAM) sample preparation can analyze buried polymer-metal interfaces with higher spatial resolution than that with the conventional sample preparation of a thick vertical cross-section. In the LAM of a polymer layer on a metal substrate, the polymer layer is tapered to be thin in the vicinity of the interface, and thus, sample thinning is not required. An interface between an epoxyacrylate layer and copper wire in a flexible printed circuit cable was measured using this method. A carboxylate interphase layer with a thickness of ∼130 nm was clearly visualized at the interface, and its spectrum was obtained without any signal contamination from the neighboring epoxyacrylate, which was difficult to achieve on a thick vertical cross-section. The combination of AFM-IR with LAM is a simple and useful method for high-spatial-resolution chemical analysis of buried polymer-metal interfaces.

© 2021 The Author(s)

PDF Article
More Like This
Characterization of integrated waveguides by atomic-force-microscopy-assisted mid-infrared imaging and spectroscopy

Kevin Gallacher, Ross W. Millar, Douglas J. Paul, Jacopo Frigerio, Andrea Ballabio, Giovanni Isella, Francesco Rusconi, Paolo Biagioni, Valeria Giliberti, Alessia Sorgi, Leonetta Baldassarre, and Michele Ortolani
Opt. Express 28(15) 22186-22199 (2020)

Optical trapping force combining an optical fiber probe and an AFM metallic probe

Binghui Liu, Lijun Yang, and Yang Wang
Opt. Express 19(4) 3703-3714 (2011)

Supplementary Material (1)

NameDescription
Supplement 1       sj-pdf-1-asp-10.1177_00037028211007187 - Supplemental material for Novel Method for High-Spatial-Resolution Chemical Analysis of Buried Polymer-Metal Interface: Atomic Force Microscopy-Infrared (AFM-IR) Spectroscopy with Low-Angle Microtomy

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.