Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 76,
  • Issue 10,
  • pp. 1165-1173
  • (2022)

Irradiation Induced Biochemical Changes in Human Mandibular Bone: A Raman Spectroscopic Study

Not Accessible

Your library or personal account may give you access

Abstract

Understanding the biochemical changes in irradiated human mandible after radiotherapy of cancer patients is critical for oral rehabilitation. The underlying mechanism for radiation-associated changes in the bone at the molecular level could lead to implant failure and osteoradionecrosis. The study aimed to assess the chemical composition and bone quality in irradiated human mandibular bone using Raman spectroscopy. A total of 33 bone biopsies from 16 control and 17 irradiated patients were included to quantify different biochemical parameters from the Raman spectra. The differences in bone mineral and matrix band intensities between control and irradiated groups were analyzed using unpaired Student's t-test with statistical significance at p < 0.05. Findings suggest that the intensity of the phosphate band is significantly decreased and the carbonate band is significantly increased in the irradiated group. Further, the mineral crystallinity and carbonate to phosphate ratio are increased. The mineral to matrix ratio is decreased in the irradiated group. Principal component analysis (PCA) based on the local radiation dose and biopsy time interval of irradiated samples did not show any specific classification between irradiation sub-groups. Irradiation disrupted the interaction and bonding between the organic matrix and hydroxyapatite minerals affecting the bone biochemical properties. However, the normal clinical appearance of irradiated bone would have been accompanied by underlying biochemical and microscopical changes which might result in radiation-induced delayed complications.

© 2022 The Author(s)

PDF Article
More Like This
Biochemical characterization of human gingival crevicular fluid during orthodontic tooth movement using Raman spectroscopy

Gyeong Bok Jung, Kyung-A Kim, Ihn Han, Young-Guk Park, and Hun-Kuk Park
Biomed. Opt. Express 5(10) 3508-3520 (2014)

Spatially offset Raman spectroscopy for in vivo bone strength prediction

Chi Shu, Keren Chen, Maria Lynch, Jason R. Maher, Hani A. Awad, and Andrew J. Berger
Biomed. Opt. Express 9(10) 4781-4791 (2018)

A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy

Gyeong Bok Jung, Young Ju Lee, Gihyun Lee, and Hun-Kuk Park
Biomed. Opt. Express 4(11) 2673-2682 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.