Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Investigation of the Spatial Generation of Stimulated Raman Scattering Using Computer Simulation and Experimentation

Not Accessible

Your library or personal account may give you access

Abstract

Stimulated Raman scattering is a phenomenon with potential use in providing real-time molecular information in three-dimensions (3D) of a sample using imaging. For precise imaging, the knowledge about the spatial generation of stimulated Raman scattering is essential. To investigate the spatial behavior in an idealized case, computer simulations and experiments were performed. For the computer simulations, diffraction theory was used for the beam propagation complemented with nonlinear phase modulation describing the interaction between the light and matter. For the experiments, a volume of ethanol was illuminated by an expanded light beam and a plane inside the volume was imaged in transmission. For generating stimulated Raman scattering, a pump beam was focused into this volume and led to a beam dump after passing the volume. The pulse duration of the two beams were 6 ns and the pump beam energy ranged from 1 to 27 mJ. The effect of increasing pump power on the spatial distribution of the Raman gain and the spatial growth of the signal at different interaction lengths between the beam and the sample was investigated. The spatial width of the region where the stimulated Raman scattering signal was generated for experiments and simulation was 0.21 and 0.09 mm, respectively. The experimental and simulation results showed that most of the stimulated Raman scattering is generated close to the pump beam focus and the maximum peak of the Stokes intensity spatially comes shortly after the peak of the pump intensity.

© 2022 The Author(s)

PDF Article
More Like This
Generation of multicolor spatial solitons by stimulated Raman scattering

Vincent Boucher and Xuan Nguyen-Phu
Appl. Opt. 41(21) 4390-4393 (2002)

Stimulated Raman scattering signals recorded by the use of an optical imaging technique

Eynas Amer, Per Gren, and Mikael Sjödahl
Appl. Opt. 54(20) 6377-6385 (2015)

Stimulated Raman scattering detection for chemically specific time-resolved imaging of gases

Eynas Amer, Per Gren, Stefan Edenharder, and Mikael Sjödahl
Opt. Express 24(9) 9984-9993 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.