Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 76,
  • Issue 7,
  • pp. 851-855
  • (2022)

Crosstalk-Free Excitation Scheme for Quantitative OH Laser-Induced Fluorescence in Environments Containing Excited CO

Open Access Open Access

Abstract

Spectral overlap in the single-photon laser-induced fluorescence between the 3064 Å system of OH and the third positive system of CO is detected in a highly-excited environment, namely, a CO2-H2O plasma. The overlap is distorting excitation and fluorescence spectra as well as fluorescence time decays of commonly used excitation transitions of OH. As a consequence, systematic errors are introduced into the determination of temperatures, gas compositions, and absolute number densities. The P1(2) transition is proposed to circumvent the distortion while still allowing for quantitative measurements due to the availability of non-radiative rate coefficients.

© 2022 The Author(s)

PDF Article

References

  • View by:

  1. L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
    [Crossref]
  2. Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
    [Crossref]
  3. Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
    [Crossref]
  4. L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
    [Crossref]
  5. L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
    [Crossref]
  6. T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
    [Crossref]
  7. J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
    [Crossref]
  8. S. De Benedictis, G. Dilecce. “Laser-Induced Fluorescence Methods for Transient Species Detection in High-Pressure Discharges”. In: P.K. Chu, X.P. Lu editor. Low Temperature Plasma Technology: Methods and Applications. Boca Raton, Florida: CRC Press, 2013. Vol. 1, Chap. 9, Pp. 261–284. doi:.
  9. G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
    [Crossref]
  10. G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
    [Crossref]
  11. T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
    [Crossref]
  12. M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
    [Crossref]
  13. L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
    [Crossref]
  14. M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
    [Crossref]
  15. R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
    [Crossref]
  16. M. Mosburger, V. Sick. “Single Laser Detection of CO and OH via Laser-Induced Fluorescence”. Appl. Phys. B: Lasers Opt. 2010. 99(1): 1–6. doi:.
    [Crossref]
  17. L.F. Dimauro, T.A. Miller. “Laser-Induced Fluorescence of CO+ and the CO ai3 State Produced by Multiphoton Absorption in a Supersonic Jet”. Chem. Phys. Lett. 1987. 138(2): 175–180. doi:.
    [Crossref]
  18. R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
    [Crossref]
  19. M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc
  20. J. Luque, D.R. Crosley. “LIFBASE Version 2.1.1”. SRI International Report MP1999.
  21. P.H. Krupenie. The Band Spectrum of Carbon Monoxide. Washington D.C.: United States Government Printing Office, 1966.
  22. R.W.B. Pearse, A.G. Gaydon. The Identification of Molecular Spectra. London: Chapman and Hall, 1950.
  23. A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
    [Crossref]
  24. A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
    [Crossref]
  25. T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
    [Crossref]
  26. B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
    [Crossref]
  27. R.K. Asundi, O.W. Richardson “The Third Positive Carbon and Associated Bands” Proc. R. Soc. A. 1929. 124(794): 277–296. doi:.
    [Crossref]
  28. G.H. Dieke, J.W. Mauchly. “The Structure of the Third Positive Group of CO Bands”. Phys. Rev. 1933. 43(1): 12–30. doi:.
    [Crossref]

2022 (1)

M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc

2021 (2)

T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
[Crossref]

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

2020 (4)

Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
[Crossref]

M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
[Crossref]

A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
[Crossref]

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

2019 (2)

G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
[Crossref]

M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
[Crossref]

2018 (1)

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

2017 (4)

L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
[Crossref]

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
[Crossref]

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

2016 (1)

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

2015 (1)

G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
[Crossref]

2014 (1)

T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
[Crossref]

2013 (1)

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

2012 (1)

L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
[Crossref]

2010 (1)

M. Mosburger, V. Sick. “Single Laser Detection of CO and OH via Laser-Induced Fluorescence”. Appl. Phys. B: Lasers Opt. 2010. 99(1): 1–6. doi:.
[Crossref]

1994 (1)

R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
[Crossref]

1987 (1)

L.F. Dimauro, T.A. Miller. “Laser-Induced Fluorescence of CO+ and the CO ai3 State Produced by Multiphoton Absorption in a Supersonic Jet”. Chem. Phys. Lett. 1987. 138(2): 175–180. doi:.
[Crossref]

1933 (1)

G.H. Dieke, J.W. Mauchly. “The Structure of the Third Positive Group of CO Bands”. Phys. Rev. 1933. 43(1): 12–30. doi:.
[Crossref]

1929 (1)

R.K. Asundi, O.W. Richardson “The Third Positive Carbon and Associated Bands” Proc. R. Soc. A. 1929. 124(794): 277–296. doi:.
[Crossref]

Alves, L.L.

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

Asundi, R.K.

R.K. Asundi, O.W. Richardson “The Third Positive Carbon and Associated Bands” Proc. R. Soc. A. 1929. 124(794): 277–296. doi:.
[Crossref]

Bogaerts, A.

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

Boogaarts, M.G.H.

R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
[Crossref]

Bruggeman, P.J.

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
[Crossref]

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

Budde, M.

M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc

Ceppelli, M.

M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc

M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
[Crossref]

G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
[Crossref]

Crosley, D.R.

J. Luque, D.R. Crosley. “LIFBASE Version 2.1.1”. SRI International Report MP1999.

Damen, M.A.

M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
[Crossref]

De Benedictis, S.

S. De Benedictis, G. Dilecce. “Laser-Induced Fluorescence Methods for Transient Species Detection in High-Pressure Discharges”. In: P.K. Chu, X.P. Lu editor. Low Temperature Plasma Technology: Methods and Applications. Boca Raton, Florida: CRC Press, 2013. Vol. 1, Chap. 9, Pp. 261–284. doi:.

Dieke, G.H.

G.H. Dieke, J.W. Mauchly. “The Structure of the Third Positive Group of CO Bands”. Phys. Rev. 1933. 43(1): 12–30. doi:.
[Crossref]

Dilecce, G.

M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
[Crossref]

G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
[Crossref]

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
[Crossref]

G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
[Crossref]

S. De Benedictis, G. Dilecce. “Laser-Induced Fluorescence Methods for Transient Species Detection in High-Pressure Discharges”. In: P.K. Chu, X.P. Lu editor. Low Temperature Plasma Technology: Methods and Applications. Boca Raton, Florida: CRC Press, 2013. Vol. 1, Chap. 9, Pp. 261–284. doi:.

Dimauro, L.F.

L.F. Dimauro, T.A. Miller. “Laser-Induced Fluorescence of CO+ and the CO ai3 State Produced by Multiphoton Absorption in a Supersonic Jet”. Chem. Phys. Lett. 1987. 138(2): 175–180. doi:.
[Crossref]

Engeln, R.

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

Gatti, N.

L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
[Crossref]

Gaydon, A.G.

R.W.B. Pearse, A.G. Gaydon. The Identification of Molecular Spectra. London: Chapman and Hall, 1950.

Guaitella, O.

A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
[Crossref]

Guerra, O.G.V.

T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
[Crossref]

Guerra, V.

A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
[Crossref]

Jain, A.

Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
[Crossref]

Jongma, R.T.

R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
[Crossref]

Klarenaar, B.L.M.

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

Kolandaivel, P.

L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
[Crossref]

Krupenie, P.H.

P.H. Krupenie. The Band Spectrum of Carbon Monoxide. Washington D.C.: United States Government Printing Office, 1966.

Kulatilaka, W.

Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
[Crossref]

Laroussi, M.

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

Lovascio, S.

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

Lu, X.

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

Luque, J.

J. Luque, D.R. Crosley. “LIFBASE Version 2.1.1”. SRI International Report MP1999.

M Hage, D.A.C.

M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
[Crossref]

Martini, L.M.

M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc

M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
[Crossref]

G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
[Crossref]

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
[Crossref]

L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
[Crossref]

G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
[Crossref]

Mauchly, J.W.

G.H. Dieke, J.W. Mauchly. “The Structure of the Third Positive Group of CO Bands”. Phys. Rev. 1933. 43(1): 12–30. doi:.
[Crossref]

Meijer, G.

R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
[Crossref]

Miller, T.A.

L.F. Dimauro, T.A. Miller. “Laser-Induced Fluorescence of CO+ and the CO ai3 State Produced by Multiphoton Absorption in a Supersonic Jet”. Chem. Phys. Lett. 1987. 138(2): 175–180. doi:.
[Crossref]

Mohades, S.

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

Morillo-Candas, A.S.

T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
[Crossref]

A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
[Crossref]

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

Mosburger, M.

M. Mosburger, V. Sick. “Single Laser Detection of CO and OH via Laser-Induced Fluorescence”. Appl. Phys. B: Lasers Opt. 2010. 99(1): 1–6. doi:.
[Crossref]

Ozkan, A.

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

Pearse, R.W.B.

R.W.B. Pearse, A.G. Gaydon. The Identification of Molecular Spectra. London: Chapman and Hall, 1950.

Reniers, F.

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

Richardson, O.W.

R.K. Asundi, O.W. Richardson “The Third Positive Carbon and Associated Bands” Proc. R. Soc. A. 1929. 124(794): 277–296. doi:.
[Crossref]

Rong, M.

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

Sadeghi, N.

T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
[Crossref]

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

Sandhiya, L.

L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
[Crossref]

Senthilkumar, K.

L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
[Crossref]

Sick, V.

M. Mosburger, V. Sick. “Single Laser Detection of CO and OH via Laser-Induced Fluorescence”. Appl. Phys. B: Lasers Opt. 2010. 99(1): 1–6. doi:.
[Crossref]

Silva, A.F.

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

Silva, T.

T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
[Crossref]

Simeni Simeni, M.

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

Snoeckx, R.

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

Tejero-del Caz, A.

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

Tosi, P.

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
[Crossref]

van de Sanden, M.C.M.

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

van de Steeg, A.W.

M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
[Crossref]

van den Bekerom, D.C.M.

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

van der Horst, R.M.

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

Verreycken, T.

T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
[Crossref]

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

Wang, J.

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

Wang, Y.

Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
[Crossref]

Yue, Y.F.

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

Appl. Phys. B: Lasers Opt (1)

M. Mosburger, V. Sick. “Single Laser Detection of CO and OH via Laser-Induced Fluorescence”. Appl. Phys. B: Lasers Opt. 2010. 99(1): 1–6. doi:.
[Crossref]

Chem. Phys. Lett (1)

L.F. Dimauro, T.A. Miller. “Laser-Induced Fluorescence of CO+ and the CO ai3 State Produced by Multiphoton Absorption in a Supersonic Jet”. Chem. Phys. Lett. 1987. 138(2): 175–180. doi:.
[Crossref]

ChemSusChem (1)

R. Snoeckx, A. Ozkan, F. Reniers, A. Bogaerts. “The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study”. ChemSusChem. 2017. 10(2): 409–424. doi:.
[Crossref]

Combust. Flame (1)

Y. Wang, A. Jain, W. Kulatilaka. “Simultaneous Measurement of CO and OH in Flames Using a Single Broadband, Femtosecond Laser Pulse”. Combust. Flame. 2020. 214: 358–360. doi:.
[Crossref]

IEEE Trans. Plasma Sci (1)

Y.F. Yue, S. Mohades, M. Laroussi, X. Lu. “Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications”. IEEE Trans. Plasma Sci. 2016. 44(11): 2754–2758. doi:.
[Crossref]

J. CO2 Util (1)

T. Silva, A.S. Morillo-Candas, O.G.V. Guerra. “Modeling the Time Evolution of the Dissociation Fraction in Low-Pressure CO2 Plasmas”. J. CO2 Util. 2021. 53: 101719. doi:.
[Crossref]

J. Mol. Spectrosc (1)

R.T. Jongma, M.G.H. Boogaarts, G. Meijer. “Double-Resonance Spectroscopy on Triplet States of CO”. J. Mol. Spectrosc. 1994. 165(2): 303–314. doi:.
[Crossref]

J. Phys. Chem. C (1)

A.S. Morillo-Candas, V. Guerra, O. Guaitella. “Time Evolution of the Dissociation Fraction in RF CO2 Plasmas: Impact and Nature of Back-Reaction Mechanisms”. J. Phys. Chem. C. 2020. 124(32): 17459-17475. doi:.
[Crossref]

J. Phys. D: Appl. Phys (2)

L.M. Martini, N. Gatti, G. Dilecce, et al. “Rate Constants of Quenching and Vibrational Relaxation in the OH(A2+,v=0,1), Manifold with Various Colliders”. J. Phys. D: Appl. Phys. 2017. 50(11): 114003. doi:.
[Crossref]

T. Verreycken, R.M. van der Horst, N. Sadeghi, P.J. Bruggeman. “Absolute Calibration of OH Density in a Nanosecond Pulsed Plasma Filament in Atmospheric Pressure He–H2O: Comparison of Independent Calibration Methods”. J. Phys. D: Appl. Phys. 2013. 46(46): 464004. doi:.
[Crossref]

Phys. Rev (1)

G.H. Dieke, J.W. Mauchly. “The Structure of the Third Positive Group of CO Bands”. Phys. Rev. 1933. 43(1): 12–30. doi:.
[Crossref]

Plasma Chem. Plasma Process (1)

L.M. Martini, S. Lovascio, G. Dilecce, P. Tosi. “Time-Resolved CO2 Dissociation in a Nanosecond Pulsed Discharge”. Plasma Chem. Plasma Process. 2018. 38(4): 707–718. doi:.
[Crossref]

Plasma Phys. Controlled Fusion (1)

L.M. Martini, N. Gatti, G. Dilecce, et al. “Laser Induced Fluorescence in Nanosecond Repetitively Pulsed Discharges for CO2 Conversion”. Plasma Phys. Controlled Fusion. 2017. 60(1): 014016. doi:.
[Crossref]

Plasma Sources Sci. Technol (9)

T. Verreycken, N. Sadeghi, P.J. Bruggeman. “Time-Resolved Absolute OH Density of a Nanosecond Pulsed Discharge in Atmospheric Pressure He–H2O: Absolute Calibration, Collisional Quenching and the Importance of Charged Species in OH Production”. Plasma Sources Sci. Technol. 2014. 23(4): 045005. doi:.
[Crossref]

J. Wang, M. Simeni Simeni, M. Rong, P.J. Bruggeman. “Absolute OH Density and Gas Temperature Measurements by Laser Induced Fluorescence in a Microsecond Pulsed Discharge Generated in a Conductive NaCl Solution”. Plasma Sources Sci. Technol. 2021. 30(7): 075016. doi:.
[Crossref]

M. Ceppelli, L.M. Martini, G. Dilecce, et al. “Non-Thermal Rate Constants of Quenching and Vibrational Relaxation in the OH (A2+,v=0,1) Manifold”. Plasma Sources Sci. Technol. 2020. 29(6): 065019. doi:.
[Crossref]

G. Dilecce, L.M. Martini, P. Tosi, et al. “Laser Induced Fluorescence in Atmospheric Pressure Discharges”. Plasma Sources Sci. Technol. 2015. 24(3): 034007. doi:.
[Crossref]

G. Dilecce, L.M. Martini, M. Ceppelli, et al. “Progress on Laser Induced Fluorescence in a Collisional Environment: the Case of OH Molecules in ns Pulsed Discharges”. Plasma Sources Sci. Technol. 2019. 28(2): 025012. doi:.
[Crossref]

M. Budde, L.M. Martini, M. Ceppelli, et al. “Absolute OH Density Measurements in a CO2-H2O Glow Discharge by Laser-Induced Fluorescence Spectroscopy”. Plasma Sources Sci. Technol. 2022. Epub ahead of print. http://iopscience.iop.org/article/10.1088/1361-6595/ac5ecc

B.L.M. Klarenaar, R. Engeln, D.C.M. van den Bekerom, M.C.M. van de Sanden, et al. “Time Evolution of Vibrational Temperatures in a CO2 Glow Discharge Measured with Infrared Absorption Spectroscopy”. Plasma Sources Sci. Technol. 2017. 26(11): 115008. doi:.
[Crossref]

M.A. Damen, D.A.C. M Hage, A.W. van de Steeg, et al. “Absolute CO Number Densities Measured Using TALIF in a Non-Thermal Plasma Environment”. Plasma Sources Sci. Technol. 2019. 28(11): 115006. doi:.
[Crossref]

A.F. Silva, A.S. Morillo-Candas, A. Tejero-del Caz, L.L. Alves. “A Reaction Mechanism for Vibrationally-Cold Low-Pressure CO2 Plasmas”. Plasma Sources Sci. Technol. 2020. 29(12): 125020. doi:.
[Crossref]

Proc. R. Soc. A (1)

R.K. Asundi, O.W. Richardson “The Third Positive Carbon and Associated Bands” Proc. R. Soc. A. 1929. 124(794): 277–296. doi:.
[Crossref]

Struct. Chem (1)

L. Sandhiya, P. Kolandaivel, K. Senthilkumar. “Theoretical Studies on the Reaction Mechanism and Kinetics of the Atmospheric Reactions of 1,4-thioxane with OH Radical”. Struct. Chem. 2012. 23(5): 1475–1488. doi:.
[Crossref]

Other (4)

S. De Benedictis, G. Dilecce. “Laser-Induced Fluorescence Methods for Transient Species Detection in High-Pressure Discharges”. In: P.K. Chu, X.P. Lu editor. Low Temperature Plasma Technology: Methods and Applications. Boca Raton, Florida: CRC Press, 2013. Vol. 1, Chap. 9, Pp. 261–284. doi:.

J. Luque, D.R. Crosley. “LIFBASE Version 2.1.1”. SRI International Report MP1999.

P.H. Krupenie. The Band Spectrum of Carbon Monoxide. Washington D.C.: United States Government Printing Office, 1966.

R.W.B. Pearse, A.G. Gaydon. The Identification of Molecular Spectra. London: Chapman and Hall, 1950.

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Material - Crosstalk-Free Excitation Scheme for Quantitative OH Laser-Induced Fluorescence in Environments Containing Excited CO

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved