Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis

Not Accessible

Your library or personal account may give you access

Abstract

The introduction of “deep learning” algorithms for feature identification in digital imaging has paved the way for artificial intelligence applications that up to a decade ago were considered technologically impossible to achieve, from the development of driverless vehicles to the fully automated diagnostics of cancer and other diseases from histological images. The success of deep learning applications has, in turn, attracted the attention of several researchers for the possible use of these methods in chemometrics, applied to the analysis of complex phenomena as, for example, the optical emission of laser-induced plasmas. In this paper, we will discuss the advantages and disadvantages of convolutional neural networks, one of the most diffused deep learning techniques, in laser-induced breakdown spectroscopy (LIBS) applications (classification and quantitative analysis), to understand the real potential of “deep LIBS” in practical everyday use. In particular, the comparison with the results obtained using “shallow” artificial neural networks will be presented and discussed, taking as a case study the analysis of six bronze samples of known composition.

© 2022 The Author(s)

PDF Article
More Like This
Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm

Kuohu Li, Lianbo Guo, Jiaming Li, Xinyan Yang, Rongxing Yi, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(4) 935-941 (2017)

Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network

Amir Hossein Farhadian, Masoud Kavosh Tehrani, Mohammad Hossein Keshavarz, and Seyyed Mohammad Reza Darbani
Appl. Opt. 56(12) 3372-3377 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.