Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 76,
  • Issue 9,
  • pp. 1142-1153
  • (2022)

Coupling Pulse Radiolysis with Nanosecond Time-Resolved Step-Scan Fourier Transform Infrared Spectroscopy: Broadband Mid-Infrared Detection of Radiolytically Generated Transients

Not Accessible

Your library or personal account may give you access

Abstract

We describe the first implementation of broadband, nanosecond time-resolved step-scan Fourier transform infrared (S2-FT-IR) spectroscopy at a pulse radiolysis facility. This new technique allows the rapid acquisition of nano- to microsecond time-resolved infrared (TRIR) spectra of transient species generated by pulse radiolysis of liquid samples at a pulsed electron accelerator. Wide regions of the mid-infrared can be probed in a single experiment, which often takes < 20–30 min to complete. It is therefore a powerful method for rapidly locating the IR absorptions of short-lived, radiation-induced species in solution, and for directly monitoring their subsequent reactions. Time-resolved step-scan FT-IR detection for pulse radiolysis thus complements our existing narrowband quantum cascade laser-based pulse radiolysis-TRIR detection system, which is more suitable for acquiring single-shot kinetics and narrowband TRIR spectra on small-volume samples and in strongly absorbing solvents, such as water. We have demonstrated the application of time-resolved step-scan FT-IR spectroscopy to pulse radiolysis by probing the metal carbonyl and organic carbonyl vibrations of the one-electron-reduced forms of two Re-based CO2 reduction catalysts in acetonitrile solution. Transient IR absorption bands with amplitudes on the order of 1 × 10−3 are easily detected on the sub-microsecond timescale using electron pulses as short as 250 ns.

© 2022 The Author(s)

PDF Article
More Like This
Fast time-resolved Fourier-transform spectroscopy for the study of transient chemical reactions

C. A. Carere, W. S. Neil, and J. J. Sloan
Appl. Opt. 35(16) 2857-2866 (1996)

Mid-infrared Fourier transform spectroscopy with a broadband frequency comb

Florian Adler, Piotr Masłowski, Aleksandra Foltynowicz, Kevin C. Cossel, Travis C. Briles, Ingmar Hartl, and Jun Ye
Opt. Express 18(21) 21861-21872 (2010)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Material - Coupling Pulse Radiolysis with Nanosecond Time-Resolved Step-Scan Fourier Transform Infrared Spectroscopy: Broadband Mid-Infrared Detection of Radiolytically Generated Transients

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.