Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 2,
  • pp. 178-186
  • (2023)

Infrared Optical Functions of Water Retrieved Using Attenuated Total Reflection Spectroscopy

Open Access Open Access

Abstract

Comprehensive modeling of non-polarized infrared attenuated total reflection spectrum based on Fresnel equations and wavenumber-dependent dielectric function models of isotropic materials is shown to be a suitable and easy methodology to retrieve optical functions. The scheme is completely general and can be used even for strong dispersion and absorption resonances. Attenuated total reflection spectra in liquid water, measured in the spectral region 100–4400 cm−1 with diamond and germanium as internal reflection elements, were used to illustrate and evaluate the method. The refractive index of water computed from the dispersion analysis is critically compared with literature data.

© 2022 The Author(s)

PDF Article

References

  • View by:

  1. N.J. Harrick. Internal Reflection Spectroscopy. New York: Wiley, 1967.
  2. M. Milosevic. Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: Wiley, 2012.
  3. F.M. Mirabella. “History of Internal Reflection Spectroscopy”. In: F.M. Mirabella, editor. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker, 1993. Chap. 1, Pp. 1‐15.
  4. J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
    [Crossref]
  5. M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
    [Crossref]
  6. R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
    [Crossref]
  7. W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
    [Crossref]
  8. W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
    [Crossref]
  9. A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
    [Crossref]
  10. D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
    [Crossref]
  11. F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
    [Crossref]
  12. D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
    [Crossref]
  13. S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
    [Crossref]
  14. M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
    [Crossref]
  15. O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
    [Crossref]
  16. J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
    [Crossref]
  17. E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
    [Crossref]
  18. J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
    [Crossref]
  19. H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
    [Crossref]
  20. M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.
  21. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
  22. R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.
  23. S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
    [Crossref]
  24. J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
  25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
  26. M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.
  27. D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.
  28. R.F. Potter. “Subpart 2: Semiconductors. Germanium (Ge)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego, USA: Academic Press, 1998. Vol. 1, Pp. 465‐478.
  29. D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
    [Crossref]
  30. D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.

2020 (2)

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

2016 (1)

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

2004 (1)

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

2003 (1)

S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]

2002 (1)

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

2000 (1)

M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]

1995 (1)

1989 (1)

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

1988 (1)

O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]

1975 (1)

H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]

1974 (1)

F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]

1968 (1)

D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]

1966 (1)

D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]

1963 (1)

A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]

1961 (2)

J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]

W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]

1959 (1)

W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]

Aufort, J.

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

Aymonino, P.J.

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

Balan, E.

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

Barker, A.S.

A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]

Bateman, D.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].

Belali, R.

Berreman, D.W.

D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]

Born, M.

M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.

Brouder, C.

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

Brun, J.F.

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

Bureau, B.

S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]

Castellano, E.E.

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]

Chipman, R.A.

R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.

Downing, H.D.

H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]

Eaton, J.W.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].

Echegut, P.

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

Edwards, D.F.

D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.

Eisenberg, D.

D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.

Elderderi, S.

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

Fahrenport, J.

J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]

Flannery, B.P.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.

Gervais, C.

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

Gervais, F.

F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]

Gonzalez, S.R.

O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]

Gregory, B.W.

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

Guida, J.A.

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

Hancer, M.

M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]

Harrick, N.J.

N.J. Harrick. Internal Reflection Spectroscopy. New York: Wiley, 1967.

Hauberg, S.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].

Henry, S.

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

Kauzmann, W.

D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.

Kleinman, D.

W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]

Kleinman, D.A.

W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]

Lam, W.-S.T.

R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.

Lee, R.E.

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

Lemaire, C.

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

Leman-Loubiére, C.

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

Lucarini, V.

V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.

MacDonald, S.A.

S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]

Mauri, F.

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

Meneses, D.S.

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

Miller, J.D.

M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]

Milosevic, M.

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

M. Milosevic. Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: Wiley, 2012.

Mirabella, F.M.

F.M. Mirabella. “History of Internal Reflection Spectroscopy”. In: F.M. Mirabella, editor. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker, 1993. Chap. 1, Pp. 1‐15.

Morvan, J.

Peiponen, K.-E.

V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.

Philipp, H.R.

D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.

Piriou, B.

F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]

Piro, O.E.

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]

Potter, R.F.

R.F. Potter. “Subpart 2: Semiconductors. Germanium (Ge)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego, USA: Academic Press, 1998. Vol. 1, Pp. 465‐478.

Press, W.H.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.

Querry, M.R.

H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]

M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.

Saarinen, J.J.

V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.

Ségalen, L.

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

Segelstein, D.J.

M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.

Simon, P.

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

Sperline, R.P.

M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]

Spitzer, W.G.

W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]

W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]

Teukolsky, S.A.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.

Unterwald, F.C.

D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]

Vartiainen, E.M.

V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.

Vetterling, W.T.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.

Vigoureux, J.-M.

Walsh, D.

W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]

Wehbring, R.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].

Wendland, N.

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

Wieliczka, D.M.

M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.

Williams, D.

H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]

D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]

Wills, L.

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

Wolf, E.

M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.

Young, G.

R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.

Appl. Spectrosc (4)

M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]

D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]

S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]

M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]

J. Chem. Phys (1)

J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]

J. Geophys. Res (1)

H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]

J. Mol. Liq (1)

S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys (1)

F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]

Nature (1)

D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]

Phys. Chem. Miner (1)

J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]

Phys. Rev (4)

W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]

W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]

A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]

D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]

Phys. Rev. B: Solid State (1)

O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]

Phys. Rev. Lett (1)

E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]

Spectrochim. Acta (1)

J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]

Other (12)

N.J. Harrick. Internal Reflection Spectroscopy. New York: Wiley, 1967.

M. Milosevic. Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: Wiley, 2012.

F.M. Mirabella. “History of Internal Reflection Spectroscopy”. In: F.M. Mirabella, editor. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker, 1993. Chap. 1, Pp. 1‐15.

M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.

V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.

R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.

D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.

J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.

M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.

D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.

R.F. Potter. “Subpart 2: Semiconductors. Germanium (Ge)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego, USA: Academic Press, 1998. Vol. 1, Pp. 465‐478.

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Material - Infrared Optical Functions of Water Retrieved Using Attenuated Total Reflection Spectroscopy

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved