Abstract
© 2022 The Author(s)
PDF Article© 2022 The Author(s)
PDF Article
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]
R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]
H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]
F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]
D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]
D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]
A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]
J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]
W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]
W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
[Crossref]
D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]
M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]
R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.
H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.
D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]
O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]
N.J. Harrick. Internal Reflection Spectroscopy. New York: Wiley, 1967.
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.
W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]
W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]
R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
M. Milosevic. Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: Wiley, 2012.
F.M. Mirabella. “History of Internal Reflection Spectroscopy”. In: F.M. Mirabella, editor. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker, 1993. Chap. 1, Pp. 1‐15.
R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
[Crossref]
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.
F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]
R.F. Potter. “Subpart 2: Semiconductors. Germanium (Ge)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego, USA: Academic Press, 1998. Vol. 1, Pp. 465‐478.
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]
M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]
W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]
W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
[Crossref]
W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.
H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]
D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.
R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.
M. Hancer, R.P. Sperline, J.D. Miller. “Anomalous Dispersion Effects in the IR-ATR Spectroscopy of Water”. Appl. Spectrosc. 2000. 54(1): 138-143.
[Crossref]
D.S. Meneses, J.F. Brun, P. Echegut, P. Simon. “Contribution of Semi-Quantum Dielectric Function Models to the Analysis of Infrared Spectra”. Appl. Spectrosc. 2004. 58(8): 969-974.
[Crossref]
S.A. MacDonald, B. Bureau. “Fourier Transform Infrared Attenuated Total Reflection and Transmission Spectra Studied by Dispersion Analysis”. Appl. Spectrosc. 2003. 57(3): 282-287.
[Crossref]
M. Milosevic, N. Wendland, R.E. Lee, B.W. Gregory. “The Usefulness of Spectroscopic Simulations”. Appl. Spectrosc. 2020. 74(3): 305-313.
[Crossref]
J.A. Guida, O.E. Piro, E.E. Castellano, P.J. Aymonino. “Attenuated Total Reflectance Infrared Spectra of Strongly Absorbing Anisotropic Crystals: Orthorhombic Na2[Fe(CN)5NO]2H2O”. J. Chem. Phys. 1989. 91(7): 4265-4272.
[Crossref]
H.D. Downing, D. Williams, M.R. Querry. “Optical Constants of Water in the Infrared”. J. Geophys. Res. 1975. 80(12): 1656-1661.
[Crossref]
S. Elderderi, C. Leman-Loubiére, L. Wills, S. Henry, et al. “ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents”. J. Mol. Liq. 2020. 311: 113361.
[Crossref]
R. Belali, J.-M. Vigoureux, J. Morvan. “Dispersion Effects on Infrared Spectra in Attenuated Total Reflection”. J. Opt. Soc. Am. B. 1995. 12(12): 2377-2381.
[Crossref]
F. Gervais, B. Piriou. “Anharmonicity in Several-Polar-Mode Crystals: Adjusting Phonon Self-Energy of LO and TO Modes in Al2O3 and TiO2 to Fit Infrared Reflectivity”. J. Phys. C: Solid State Phys. 1974. 7(13): 2374-2386.
[Crossref]
D. Williams. “Frequency Assignments in Infra-Red Spectrum of Water”. Nature. 1966. 210: 194-195.
[Crossref]
J. Aufort, L. Ségalen, C. Gervais, C. Brouder, et al. “Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite”. Phys. Chem. Miner. 2016. 43: 615-626.
[Crossref]
W.G. Spitzer, D.A. Kleinman. “Infrared Lattice Bands of Quartz”. Phys. Rev. 1961. 121(5): 1324-1335.
[Crossref]
W.G. Spitzer, D. Kleinman, D. Walsh. “Infrared Properties of Hexagonal Silicon Carbide”. Phys. Rev. 1959. 113(1): 127-132.
[Crossref]
A.S. Barker. “Infrared Lattice Vibrations and Dielectric Dispersion in Corundum”. Phys. Rev. 1963, 132(4): 1474-1481.
[Crossref]
D.W. Berreman, F.C. Unterwald. “Adjusting Poles and Zeros of Dielectric Dispersion to Fit Reststrahlen of PrCl3 and LaCl3”. Phys. Rev. 1968. 174(3): 791-799.
[Crossref]
O.E. Piro, E.E. Castellano, S.R. Gonzalez. “Attenuated Total-Reflectance Spectra of Strongly Absorbing Anisotropic Single Crystals: Trigonal α-Quartz”. Phys. Rev. B: Solid State. 1988. 38(12), 8437-8443.
[Crossref]
E. Balan, F. Mauri, C. Lemaire, C. Brouder, et al. “Multiple Ionic Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos”. Phys. Rev. Lett. 2002. 89(17): 177401.
[Crossref]
J. Fahrenport. “Attenuated Total Reflection: A New Principle for the Production of Useful Infra-Red Reflection Spectra of Organic Compounds”. Spectrochim. Acta. 1961. 17(7): 698.
[Crossref]
N.J. Harrick. Internal Reflection Spectroscopy. New York: Wiley, 1967.
M. Milosevic. Internal Reflection and ATR Spectroscopy. Hoboken, New Jersey: Wiley, 2012.
F.M. Mirabella. “History of Internal Reflection Spectroscopy”. In: F.M. Mirabella, editor. Internal Reflection Spectroscopy: Theory and Applications. New York: Dekker, 1993. Chap. 1, Pp. 1‐15.
M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light. Cambridge, UK: Cambridge University Press, 1980.
V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen. Kramers–Kronig Relations in Optical Materials Research. Berlin: Springer, 2005.
R.A. Chipman, W.-S.T. Lam, G. Young. Polarized Light and Optical Systems. New York: CRC Press, 2019. Pp. 66‐67.
D. Eisenberg, W. Kauzmann. The Structure and Properties of Water. Oxford; New York: Clarendon Press; Oxford University Press, 2005. Pp. 229.
J.W. Eaton, D. Bateman, S. Hauberg, R. Wehbring. GNU Octave, v.6.1.0 Manual. https://docs.octave.org/v6.1.0/ [accessed Sep 8 2022].
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press, 2007. Pp. 801.
M.R. Querry, D.M. Wieliczka, D.J. Segelstein. “Subpart 2: Semiconductors. Water (H2O)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 2, Pp. 1059–1077.
D.F. Edwards, H.R. Philipp. “Subpart 3: Insulators. Cubic Carbon (Diamond)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego: Academic Press, 1998. Vol. 1, Pp. 665‐674.
R.F. Potter. “Subpart 2: Semiconductors. Germanium (Ge)”. In: E.D. Palik, editor. Handbook of Optical Constants of Solids. San Diego, USA: Academic Press, 1998. Vol. 1, Pp. 465‐478.
Name | Description |
---|---|
Supplement 1 | Supplemental Material - Infrared Optical Functions of Water Retrieved Using Attenuated Total Reflection Spectroscopy |
Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.