Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 2,
  • pp. 200-209
  • (2023)

Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

Not Accessible

Your library or personal account may give you access

Abstract

Chlorophyll is one of the most important pigments in plants, and the measurement of chlorophyll levels enables real-time monitoring of plant growth, which is of great importance to the vegetation monitoring. Compared with the high cost and time-consuming operation of hyperspectral imaging technique, the spectral reflectance reconstruction technique based on RGB images has the advantages of being inexpensive and fast. In this study, using the example of ginkgo leaves, the spectra were reconstructed from red-green-blue (RGB) images taken by smartphones based on a back propagation (BP) neural network and pseudo-inverse method. Based on a BP neural network, the maximum absolute error between the reconstructed spectra and the reference spectra acquired by the hyperspectral camera was less than 0.038. A partial least squares regression (PLSR) prediction model for chlorophyll content estimation was established using the reconstructed spectra. The R2 and root mean square error (RMSE) of the validation set were 0.8237 and 1.1895%, respectively, there was a high correlation between predicted and measured values. Compared with the pseudo-inverse method, the maximum absolute error of the reconstructed spectra was reduced by 10.9%, the R2 in the chlorophyll prediction results was improved by 12.7%, and the RMSE was reduced by 19.3%. This research showed that reconstructing spectral reflectance based on RGB images can realize real-time measurement of chlorophyll content. It provided a reliable tool for fast and low-cost monitoring of plant physiology and growth conditions.

© 2022 The Author(s)

PDF Article
More Like This
Unsupervised spectral reconstruction from RGB images under two lighting conditions

Xuheng Cao, Yusheng Lian, Zilong Liu, Jin Li, and Kaixuan Wang
Opt. Lett. 49(8) 1993-1996 (2024)

Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents

Lin Du, Shuo Shi, Jian Yang, Wei Wang, Jia Sun, Biwu Cheng, Zhenbing Zhang, and Wei Gong
Opt. Express 25(6) 6539-6549 (2017)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Material - Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.