Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 2,
  • pp. 220-224
  • (2023)

Fluorometer Control and Readout Using an Arduino Nano 33 BLE Sense Board

Not Accessible

Your library or personal account may give you access

Abstract

We describe the control and interfacing of a fluorometer designed for aerial drone-based measurements of chlorophyll-a using an Arduino Nano 33 BLE Sense board. This 64 MHz controller board provided suitable resolution and speed for analog-to-digital (ADC) conversion, processed data, handled communications via the Robot Operating System (ROS) and included a variety of built-in sensors that were used to monitor the fluorometer for vibration, acoustic noise, water leaks and overheating. The fluorometer was integrated into a small Uncrewed Aircraft System (sUAS) for automated water sampling through a Raspberry Pi master computer using the ROS. The average power consumption was 1.1 W. A signal standard deviation of 334 µV was achieved for the fluorescence blank measurement, mainly determined by the input noise equivalent power of the transimpedance amplifier. An ADC precision of 130 µV for 10 Hz chopped measurements was achieved for signals in the input range 0-600 mV.

© 2022 The Author(s)

PDF Article
More Like This
Entanglement demonstration on board a nano-satellite

Aitor Villar, Alexander Lohrmann, Xueliang Bai, Tom Vergoossen, Robert Bedington, Chithrabhanu Perumangatt, Huai Ying Lim, Tanvirul Islam, Ayesha Reezwana, Zhongkan Tang, Rakhitha Chandrasekara, Subash Sachidananda, Kadir Durak, Christoph F. Wildfeuer, Douglas Griffin, Daniel K. L. Oi, and Alexander Ling
Optica 7(7) 734-737 (2020)

Sensing viruses using terahertz nano-gap metamaterials

S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn
Biomed. Opt. Express 8(8) 3551-3558 (2017)

Arduino Due based tool to facilitate in vivo two-photon excitation microscopy

Pietro Artoni, Silvia Landi, Sebastian Sulis Sato, Stefano Luin, and Gian Michele Ratto
Biomed. Opt. Express 7(4) 1604-1613 (2016)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Material - Fluorometer Control and Readout Using an Arduino Nano 33 BLE Sense Board

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.