Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 77,
  • Issue 5,
  • pp. 513-520
  • (2023)

Identification of Glucose-6 Phosphate Dehydrogenase Deficient Patients Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Using Partial Least Squares Discriminant Analysis in Aqueous Blood Samples

Not Accessible

Your library or personal account may give you access

Abstract

Glucose-6 phosphate dehydrogenase (G6PD) deficiency is an X-linked blood disease that affects 400 million people globally and is especially prevalent in malaria-endemic regions. A significant portion of carriers are asymptomatic and undiagnosed posing complications in the eradication of malaria as it restricts the types of drugs used for malaria treatment. A simple and accurate diagnosis of the deficiency is vital in the eradication of malaria. In this study, we investigate the potential of attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) as a diagnostic technique for G6PD deficiency. Venous blood samples were collected in lithium heparin anticoagulant tubes from G6PD partial and fully deficient volunteers, n = 17, and normal volunteers, n = 59, in Khon Kaen, Thailand. Spectra of aqueous and dry samples were acquired of whole blood, plasma, and red blood cells, and modeled using partial least squares discriminant analysis (PLS-DA). PLS-DA modeling resulted in a sensitivity of 0.800 and specificity of 0.800 correctly classifying fully deficient participants as well as a majority of partially deficient females who are often misdiagnosed as normal by current screening methods. The viability of utilizing aqueous samples has always been hindered by the variability of hydration in the sample, but by employing multicurve curve resolution-alternating least squares to subtract water from each sample we are able to produce high-quality spectra with minimized water contributions. The approach shows proof of principle that ATR FT-IR combined with multivariate data analysis could become a frontline screening tool for G6PD deficiency by improving tailored drug treatments and ultimately saving lives.

© 2023 The Author(s)

PDF Article
More Like This
Determination of glucose in whole blood samples by mid-infrared spectroscopy

Yoen-Joo Kim, Sangjoon Hahn, and Gilwon Yoon
Appl. Opt. 42(4) 745-749 (2003)

Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis

Meisam Gazmeh, Maryam Bahreini, and Seyed Hassan Tavassoli
Appl. Opt. 54(1) 123-131 (2015)

Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument

Ann M. Ollila, Jeremie Lasue, Horton E. Newsom, Rosalie A. Multari, Roger C. Wiens, and Samuel M. Clegg
Appl. Opt. 51(7) B130-B142 (2012)

Supplementary Material (1)

NameDescription
Supplement 1       sj-docx-1-asp-10.1177_00037028231170851 - Supplemental material for Identification of Glucose-6 Phosphate Dehydrogenase Deficient Patients Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Using Partial Least Squares Discriminant Analysis in Aqueous Blood Samples

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.