C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
M. Sachar, K. E. Anderson, and X. Ma, “Protoporphyrin IX: the good, the bad, and the ugly,” J. Pharmacol. Exp. Ther. 356(2), 267–275 (2016).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
D. Ihara, H. Hazama, T. Nishimura, Y. Morita, and K. Awazu, “Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study,” J. Biomed. Opt. 25(06), 1 (2020).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron. 102, 136–149 (2018).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
M. Marois, J. Bravo, S. C. Davis, and S. C. Kanick, “Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms,” J. Biomed. Opt. 21(3), 035003 (2016).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
J. Leveckis, J. L. Burn, N. J. Brown, and M. W. Reed, “Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder,” J. Urol. 152(2 Part 1), 550–553 (1994).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
J. Leveckis, J. L. Burn, N. J. Brown, and M. W. Reed, “Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder,” J. Urol. 152(2 Part 1), 550–553 (1994).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
M. Marois, J. Bravo, S. C. Davis, and S. C. Kanick, “Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms,” J. Biomed. Opt. 21(3), 035003 (2016).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98(1), 77–94 (2010).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
S. Hernot, L. van Manen, P. Debie, J. S. D. Mieog, and A. L. Vahrmeijer, “Latest developments in molecular tracers for fluorescence image-guided cancer surgery,” Lancet Oncol. 20(7), e354–e367 (2019).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
Q. Deng, Z. Lan, L. Xu, Z. Zhu, and X. Shu, “A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging,” Sens. Actuators, B 343, 130086 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
F. Fischer, E. F. Dickson, J. C. Kennedy, and R. H. Pottier, “An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing,” Lasers Med. Sci. 16(3), 207–212 (2001).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
Y. Liu, A. M. Rollins, R. M. Levenson, F. Fereidouni, and M. W. Jenkins, “Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone,” Commun. Biol. 4(1), 334 (2021).
[Crossref]
F. Fischer, E. F. Dickson, J. C. Kennedy, and R. H. Pottier, “An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing,” Lasers Med. Sci. 16(3), 207–212 (2001).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
A. J. Ruiz, M. K. Giallorenzi, B. Hunt, K. S. Samkoe, and B. W. Pogue, “Lighting gel filters as low-cost alternatives for fluorescence imaging and optical system design,” (Under Review).
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, “Smartphone-based microscopes,” in Smartphone Based Medical Diagnostics (Elsevier, 2020), pp. 159–175.
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
D. Ihara, H. Hazama, T. Nishimura, Y. Morita, and K. Awazu, “Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study,” J. Biomed. Opt. 25(06), 1 (2020).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
S. Hernot, L. van Manen, P. Debie, J. S. D. Mieog, and A. L. Vahrmeijer, “Latest developments in molecular tracers for fluorescence image-guided cancer surgery,” Lancet Oncol. 20(7), e354–e367 (2019).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
B. Hunt, A. J. Ruiz, and B. W. Pogue, “Smartphone-based imaging systems for medical applications: a critical review,” J. Biomed. Opt. 26(04), 040902 (2021).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
A. J. Ruiz, M. K. Giallorenzi, B. Hunt, K. S. Samkoe, and B. W. Pogue, “Lighting gel filters as low-cost alternatives for fluorescence imaging and optical system design,” (Under Review).
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
D. Ihara, H. Hazama, T. Nishimura, Y. Morita, and K. Awazu, “Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study,” J. Biomed. Opt. 25(06), 1 (2020).
[Crossref]
S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron. 102, 136–149 (2018).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
Y. Liu, A. M. Rollins, R. M. Levenson, F. Fereidouni, and M. W. Jenkins, “Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone,” Commun. Biol. 4(1), 334 (2021).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron. 102, 136–149 (2018).
[Crossref]
W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, “Smartphone-based microscopes,” in Smartphone Based Medical Diagnostics (Elsevier, 2020), pp. 159–175.
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
M. Marois, J. Bravo, S. C. Davis, and S. C. Kanick, “Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms,” J. Biomed. Opt. 21(3), 035003 (2016).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
F. Fischer, E. F. Dickson, J. C. Kennedy, and R. H. Pottier, “An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing,” Lasers Med. Sci. 16(3), 207–212 (2001).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, “Smartphone-based microscopes,” in Smartphone Based Medical Diagnostics (Elsevier, 2020), pp. 159–175.
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
Q. Deng, Z. Lan, L. Xu, Z. Zhu, and X. Shu, “A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging,” Sens. Actuators, B 343, 130086 (2021).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98(1), 77–94 (2010).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
J. Leveckis, J. L. Burn, N. J. Brown, and M. W. Reed, “Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder,” J. Urol. 152(2 Part 1), 550–553 (1994).
[Crossref]
Y. Liu, A. M. Rollins, R. M. Levenson, F. Fereidouni, and M. W. Jenkins, “Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone,” Commun. Biol. 4(1), 334 (2021).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
R. Uthoff, B. Song, M. Maarouf, V. Shi, and R. Liang, “Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,” J. Biomed. Opt. 25(06), 1–21 (2020).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
Y. Liu, A. M. Rollins, R. M. Levenson, F. Fereidouni, and M. W. Jenkins, “Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone,” Commun. Biol. 4(1), 334 (2021).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
M. Sachar, K. E. Anderson, and X. Ma, “Protoporphyrin IX: the good, the bad, and the ugly,” J. Pharmacol. Exp. Ther. 356(2), 267–275 (2016).
[Crossref]
R. Uthoff, B. Song, M. Maarouf, V. Shi, and R. Liang, “Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,” J. Biomed. Opt. 25(06), 1–21 (2020).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
M. Marois, J. Bravo, S. C. Davis, and S. C. Kanick, “Characterization and standardization of tissue-simulating protoporphyrin IX optical phantoms,” J. Biomed. Opt. 21(3), 035003 (2016).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron. 102, 136–149 (2018).
[Crossref]
S. Hernot, L. van Manen, P. Debie, J. S. D. Mieog, and A. L. Vahrmeijer, “Latest developments in molecular tracers for fluorescence image-guided cancer surgery,” Lancet Oncol. 20(7), e354–e367 (2019).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
D. Ihara, H. Hazama, T. Nishimura, Y. Morita, and K. Awazu, “Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study,” J. Biomed. Opt. 25(06), 1 (2020).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, “Smartphone-based microscopes,” in Smartphone Based Medical Diagnostics (Elsevier, 2020), pp. 159–175.
D. Ihara, H. Hazama, T. Nishimura, Y. Morita, and K. Awazu, “Fluorescence detection of deep intramucosal cancer excited by green light for photodynamic diagnosis using protoporphyrin IX induced by 5-aminolevulinic acid: an ex vivo study,” J. Biomed. Opt. 25(06), 1 (2020).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
B. Hunt, A. J. Ruiz, and B. W. Pogue, “Smartphone-based imaging systems for medical applications: a critical review,” J. Biomed. Opt. 26(04), 040902 (2021).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98(1), 77–94 (2010).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
A. J. Ruiz, M. K. Giallorenzi, B. Hunt, K. S. Samkoe, and B. W. Pogue, “Lighting gel filters as low-cost alternatives for fluorescence imaging and optical system design,” (Under Review).
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
F. Fischer, E. F. Dickson, J. C. Kennedy, and R. H. Pottier, “An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing,” Lasers Med. Sci. 16(3), 207–212 (2001).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
J. Leveckis, J. L. Burn, N. J. Brown, and M. W. Reed, “Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder,” J. Urol. 152(2 Part 1), 550–553 (1994).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
Y. Liu, A. M. Rollins, R. M. Levenson, F. Fereidouni, and M. W. Jenkins, “Pocket MUSE: an affordable, versatile and high-performance fluorescence microscope using a smartphone,” Commun. Biol. 4(1), 334 (2021).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
B. Hunt, A. J. Ruiz, and B. W. Pogue, “Smartphone-based imaging systems for medical applications: a critical review,” J. Biomed. Opt. 26(04), 040902 (2021).
[Crossref]
A. J. Ruiz, E. P. M. Larochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, and B. W. Pogue, “Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin,” J. Biomed. Opt. 25(6), 1–13 (2019).
[Crossref]
A. J. Ruiz, M. K. Giallorenzi, B. Hunt, K. S. Samkoe, and B. W. Pogue, “Lighting gel filters as low-cost alternatives for fluorescence imaging and optical system design,” (Under Review).
S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron. 102, 136–149 (2018).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
M. Sachar, K. E. Anderson, and X. Ma, “Protoporphyrin IX: the good, the bad, and the ugly,” J. Pharmacol. Exp. Ther. 356(2), 267–275 (2016).
[Crossref]
A. J. Ruiz, M. K. Giallorenzi, B. Hunt, K. S. Samkoe, and B. W. Pogue, “Lighting gel filters as low-cost alternatives for fluorescence imaging and optical system design,” (Under Review).
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
B. W. Pogue, C. Sheng, J. Benevides, D. Forcione, B. Puricelli, N. Nishioka, and T. Hasan, “Protoporphyrin IX fluorescence photobleaching increases with the use of fractionated irradiation in the esophagus,” J. Biomed. Opt. 13(3), 034009 (2008).
[Crossref]
R. Uthoff, B. Song, M. Maarouf, V. Shi, and R. Liang, “Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,” J. Biomed. Opt. 25(06), 1–21 (2020).
[Crossref]
Q. Deng, Z. Lan, L. Xu, Z. Zhu, and X. Shu, “A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging,” Sens. Actuators, B 343, 130086 (2021).
[Crossref]
J. D. Gruber, A. Paliwal, V. Krishnaswamy, H. Ghadyani, M. Jermyn, J. A. O’Hara, S. C. Davis, J. S. Kerley-Hamilton, N. W. Shworak, E. V. Maytin, T. Hasan, and B. W. Pogue, “System development for high frequency ultrasound-guided fluorescence quantification of skin layers,” J. Biomed. Opt. 15(2), 026028 (2010).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
S. Khan, M. A. B. Hussain, A. P. Khan, H. Liu, S. Siddiqui, S. Mallidi, P. Leon, L. Daly, G. Rudd, F. Cuckov, C. Hopper, S. G. Bown, K. Akhtar, S. A. Hasan, S. A. Siddiqui, T. Hasan, and J. P. Celli, “Clinical evaluation of smartphone-based fluorescence imaging for guidance and monitoring of ALA-PDT treatment of early oral cancer,” J. Biomed. Opt. 25(06), 1–10 (2020).
[Crossref]
S. Parra, E. Carranza, J. Coole, B. Hunt, C. Smith, P. Keahey, M. Maza, K. Schmeler, and R. Richards-Kortum, “Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer,” IEEE J. Transl. Eng. Health Med. 8, 1–10 (2020).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
R. Uthoff, B. Song, M. Maarouf, V. Shi, and R. Liang, “Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,” J. Biomed. Opt. 25(06), 1–21 (2020).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
D. S. Kepshire, S. L. Gibbs-Strauss, S. L. Gibbs-Struass, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009).
[Crossref]
C. S. Betz, H. Stepp, P. Janda, S. Arbogast, G. Grevers, R. Baumgartner, and A. Leunig, “A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis,” Int. J. Cancer 97(2), 245–252 (2002).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
B. D. Grant, T. Quang, J. C. Possati-Resende, C. Scapulatempo-Neto, G. de Macedo Matsushita, E. C. Mauad, M. H. Stoler, P. E. Castle, J. H. T. Guerreiro Fregnani, K. M. Schmeler, and R. Richards-Kortum, “A mobile-phone based high-resolution microendoscope to image cervical precancer,” PLoS One 14(2), e0211045 (2019).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
W. Stummer, H. Stepp, G. Möller, A. Ehrhardt, M. Leonhard, and H. J. Reulen, “Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue,” Acta Neurochir. 140(10), 995–1000 (1998).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
A. Huttunen, S. Aikio, M. Kurkinen, J.-T. Makinen, R. Mitikka, L. Kivimaki, M. Harjumaa, J. Takalo-Mattila, C. Liedert, J. Hiltunen, and L. Hakalahti, “Portable low-cost fluorescence reader for LFA measurements,” IEEE Sensors J. 20(17), 10275–10282 (2020).
[Crossref]
D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]
L. Le, M. Baer, P. Briggs, N. Bullock, W. Cole, D. DiMarco, R. Hamil, K. Harrell, M. Kasper, W. Li, K. Patel, M. Sabo, K. Thibodeaux, and T. E. Serena, “Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial,” Advances in Wound Care 10(3), 123–136 (2021).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy, and L. A. Beiner, “Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo,” Photochem. Photobiol. 44(5), 679–687 (1986).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
R. Uthoff, B. Song, M. Maarouf, V. Shi, and R. Liang, “Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,” J. Biomed. Opt. 25(06), 1–21 (2020).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
S. Hernot, L. van Manen, P. Debie, J. S. D. Mieog, and A. L. Vahrmeijer, “Latest developments in molecular tracers for fluorescence image-guided cancer surgery,” Lancet Oncol. 20(7), e354–e367 (2019).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98(1), 77–94 (2010).
[Crossref]
M. C. S. Vallejo, N. M. M. Moura, A. T. P. C. Gomes, A. S. M. Joaquinito, M. A. F. Faustino, A. Almeida, I. Gonçalves, V. V. Serra, and M. G. P. M. S. Neves, “The role of porphyrinoid photosensitizers for skin wound healing,” Int. J. Mol. Sci. 22(8), 4121 (2021).
[Crossref]
S. Hernot, L. van Manen, P. Debie, J. S. D. Mieog, and A. L. Vahrmeijer, “Latest developments in molecular tracers for fluorescence image-guided cancer surgery,” Lancet Oncol. 20(7), e354–e367 (2019).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
H. Heyerdahl, I. Wang, D. L. Liu, R. Berg, S. Andersson-Engels, Q. Peng, J. Moan, S. Svanberg, and K. Svanberg, “Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues,” Cancer Lett. 112(2), 225–231 (1997).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]
C. Vietz, M. L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, and G. P. Acuna, “Benchmarking smartphone fluorescence-based microscopy with DNA origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega 4(1), 637–642 (2019).
[Crossref]
V. Müller, J. M. Sousa, H. Ceylan Koydemir, M. Veli, D. Tseng, L. Cerqueira, A. Ozcan, N. F. Azevedo, and F. Westerlund, “Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope,” RSC Adv. 8(64), 36493–36502 (2018).
[Crossref]
R. D. Uthoff, B. Song, S. Sunny, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, O. Spires, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, and R. Liang, “Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities,” PLoS One 13(12), e0207493 (2018).
[Crossref]
B. Song, S. Sunny, R. D. Uthoff, S. Patrick, A. Suresh, T. Kolur, G. Keerthi, A. Anbarani, P. Wilder-Smith, M. A. Kuriakose, P. Birur, J. J. Rodriguez, and R. Liang, “Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning,” Biomed. Opt. Express 9(11), 5318–5329 (2018).
[Crossref]
D. W. Roberts, P. A. Valdés, B. T. Harris, K. M. Fontaine, A. Hartov, X. Fan, S. Ji, S. S. Lollis, B. W. Pogue, F. Leblond, T. D. Tosteson, B. C. Wilson, and K. D. Paulsen, “Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article,” J. Neurosurg. 114(3), 595–603 (2011).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
Q. Deng, Z. Lan, L. Xu, Z. Zhu, and X. Shu, “A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging,” Sens. Actuators, B 343, 130086 (2021).
[Crossref]
C. Li, P. Liu, P. Shao, J. Pei, Y. Li, T. M. Pawlik, E. W. Martin, and R. X. Xu, “Handheld projective imaging device for near-infrared fluorescence imaging and intraoperative guidance of sentinel lymph node resection,” J. Biomed. Opt. 24(08), 1 (2019).
[Crossref]
A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. X. D. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, “Increased brain tumor resection using fluorescence image guidance in a preclinical model,” Lasers Surg. Med. 35(3), 181–190 (2004).
[Crossref]
H. Yu, T. S. Ho, H. Kang, Y. Bae, E. H. Choi, S. H. Choi, and B. Jung, “Use of digital photography to identify neoplastic skin lesions after labelling by ALA-derived protoporphyrin,” J. Porphyrins Phthalocyanines 25(04), 307–313 (2021).
[Crossref]
U. Obahiagbon, J. T. Smith, M. Zhu, B. A. Katchman, H. Arafa, K. S. Anderson, and J. M. Blain Christen, “A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications,” Biosens. Bioelectron. 117, 153–160 (2018).
[Crossref]
W. Zhu, C. Gong, N. Kulkarni, C. D. Nguyen, and D. Kang, “Smartphone-based microscopes,” in Smartphone Based Medical Diagnostics (Elsevier, 2020), pp. 159–175.
Q. Deng, Z. Lan, L. Xu, Z. Zhu, and X. Shu, “A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging,” Sens. Actuators, B 343, 130086 (2021).
[Crossref]
A. K. Dickey, C. Quick, S. Ducamp, Z. Zhu, Y.-C. A. Feng, H. Naik, M. Balwani, K. E. Anderson, X. Lin, J. E. Phillips, L. Rebeiz, H. L. Bonkovsky, B. M. McGuire, B. Wang, D. I. Chasman, J. W. Smoller, M. D. Fleming, and D. C. Christiani, “Evidence in the UK Biobank for the underdiagnosis of erythropoietic protoporphyria,” Genet. Med. 23(1), 140–148 (2021).
[Crossref]
L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]
M-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hörtnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus,” Gut 52(1), 28–33 (2003).
[Crossref]