C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
K. Abhishek and G. Hamarneh, “Matthews correlation coefficient loss for deep convolutional networks: Application to skin lesion segmentation,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (IEEE, 2021), pp. 225–229.
Q. A. Al-Haija and A. Adebanjo, “Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network,” in 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (IEEE, 2020), pp. 1–7.
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref]
N. B. Kouzminova, S. Aggarwal, A. Aggarwal, M. D. Allo, and A. Y. Lin, “Impact of initial surgical margins and residual cancer upon re-excision on outcome of patients with localized breast cancer,” Am. J. Surg. 198(6), 771–780 (2009).
[Crossref]
N. B. Kouzminova, S. Aggarwal, A. Aggarwal, M. D. Allo, and A. Y. Lin, “Impact of initial surgical margins and residual cancer upon re-excision on outcome of patients with localized breast cancer,” Am. J. Surg. 198(6), 771–780 (2009).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
Q. A. Al-Haija and A. Adebanjo, “Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network,” in 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (IEEE, 2020), pp. 1–7.
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
N. B. Kouzminova, S. Aggarwal, A. Aggarwal, M. D. Allo, and A. Y. Lin, “Impact of initial surgical margins and residual cancer upon re-excision on outcome of patients with localized breast cancer,” Am. J. Surg. 198(6), 771–780 (2009).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science 179, 423–431 (2021).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: An overview,” ArXiv200805756 Cs Stat (2020).
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
R. A. Leitgeb and B. Baumann, “Multimodal optical medical imaging concepts based on optical coherence tomography,” Front. Phys. 6, 1141–11417 (2018).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, 2019), pp. 9260–9269.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive Computation and Machine Learning (The MIT Press, 2016).
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
S. Kansal, S. Goel, J. Bhattacharya, and V. Srivastava, “Generative adversarial network–convolution neural network based breast cancer classification using optical coherence tomographic images,” Laser Phys. 30(11), 115601 (2020).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
R. J. Gray, B. A. Pockaj, E. Garvey, and S. Blair, “Intraoperative margin management in breast-conserving surgery: A systematic review of the literature,” Ann. Surg. Oncol. 25(1), 18–27 (2018).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: Principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science 179, 423–431 (2021).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
D. Chicco, N. Tötsch, and G. Jurman, “The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation,” BioData Min. 14(1), 13 (2021).
[Crossref]
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics 21(1), 6 (2020).
[Crossref]
M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, Wiley Series in Probability and Statistics (Wiley, 2015), 3rd ed.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive Computation and Machine Learning (The MIT Press, 2016).
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, 2019), pp. 9260–9269.
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
C. Dahlbäck, J. Manjer, M. Rehn, and A. Ringberg, “Determinants for patient satisfaction regarding aesthetic outcome and skin sensitivity after breast-conserving surgery,” World J. Surg. Oncol. 14(1), 303 (2016).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography – a review,” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref]
K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
N. Singla, K. Dubey, and V. Srivastava, “Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network,” J. Biophotonics 12(3), e2018002551 (2019).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett. 27(8), 861–874 (2006).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
M. Mujat, R. D. Ferguson, D. X. Hammer, C. M. Gittins, and N. V. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
R. J. Gray, B. A. Pockaj, E. Garvey, and S. Blair, “Intraoperative margin management in breast-conserving surgery: A systematic review of the literature,” Ann. Surg. Oncol. 25(1), 18–27 (2018).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
M. Mujat, R. D. Ferguson, D. X. Hammer, C. M. Gittins, and N. V. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).
[Crossref]
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
S. Kansal, S. Goel, J. Bhattacharya, and V. Srivastava, “Generative adversarial network–convolution neural network based breast cancer classification using optical coherence tomographic images,” Laser Phys. 30(11), 115601 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
M. Wang and X. Gong, “Metastatic cancer image binary classification based on ResNet model,” in 2020 IEEE 20th International Conference on Communication Technology (ICCT) (IEEE, 2020), pp. 1356–1359.
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, Adaptive Computation and Machine Learning (The MIT Press, 2016).
J. Gorodkin, “Comparing two K-category assignments by a K-category correlation coefficient,” Comput. Biol. Chem. 28(5-6), 367–374 (2004).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: An overview,” ArXiv200805756 Cs Stat (2020).
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
R. J. Gray, B. A. Pockaj, E. Garvey, and S. Blair, “Intraoperative margin management in breast-conserving surgery: A systematic review of the literature,” Ann. Surg. Oncol. 25(1), 18–27 (2018).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
K. Abhishek and G. Hamarneh, “Matthews correlation coefficient loss for deep convolutional networks: Application to skin lesion segmentation,” in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (IEEE, 2021), pp. 225–229.
M. Mujat, R. D. Ferguson, D. X. Hammer, C. M. Gittins, and N. V. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016), pp. 770–778.
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, Wiley Series in Probability and Statistics (Wiley, 2015), 3rd ed.
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng. 9(3), 90–95 (2007).
[Crossref]
M. Mujat, R. D. Ferguson, D. X. Hammer, C. M. Gittins, and N. V. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan, “Incorporating prior domain knowledge into deep neural networks,” in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 36–45.
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, 2019), pp. 9260–9269.
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
A. Nunez, V. Jones, K. Schulz-Costello, and D. Schmolze, “Accuracy of gross intraoperative margin assessment for breast cancer: Experience since the SSO-ASTRO margin consensus guidelines,” Sci. Rep. 10(1), 17344–173449 (2020).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
A. S. B. Reddy and D. S. Juliet, “Transfer learning with ResNet-50 for malaria cell-image classification,” in 2019 International Conference on Communication and Signal Processing (ICCSP) (IEEE, 2019), pp. 0945–0949.
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
D. Chicco, N. Tötsch, and G. Jurman, “The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation,” BioData Min. 14(1), 13 (2021).
[Crossref]
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics 21(1), 6 (2020).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
S. Kansal, S. Goel, J. Bhattacharya, and V. Srivastava, “Generative adversarial network–convolution neural network based breast cancer classification using optical coherence tomographic images,” Laser Phys. 30(11), 115601 (2020).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan, “Incorporating prior domain knowledge into deep neural networks,” in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 36–45.
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: Principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
N. B. Kouzminova, S. Aggarwal, A. Aggarwal, M. D. Allo, and A. Y. Lin, “Impact of initial surgical margins and residual cancer upon re-excision on outcome of patients with localized breast cancer,” Am. J. Surg. 198(6), 771–780 (2009).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” J. Biophotonics 8(4), 279–302 (2014).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
R. A. Leitgeb and B. Baumann, “Multimodal optical medical imaging concepts based on optical coherence tomography,” Front. Phys. 6, 1141–11417 (2018).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: Principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
N. B. Kouzminova, S. Aggarwal, A. Aggarwal, M. D. Allo, and A. Y. Lin, “Impact of initial surgical margins and residual cancer upon re-excision on outcome of patients with localized breast cancer,” Am. J. Surg. 198(6), 771–780 (2009).
[Crossref]
Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, 2019), pp. 9260–9269.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput. 58(6), 1251–1264 (2020).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput. 58(6), 1251–1264 (2020).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: Principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
C. Dahlbäck, J. Manjer, M. Rehn, and A. Ringberg, “Determinants for patient satisfaction regarding aesthetic outcome and skin sensitivity after breast-conserving surgery,” World J. Surg. Oncol. 14(1), 303 (2016).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan, “Incorporating prior domain knowledge into deep neural networks,” in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 36–45.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
M. Mujat, R. D. Ferguson, D. X. Hammer, C. M. Gittins, and N. V. Iftimia, “Automated algorithm for breast tissue differentiation in optical coherence tomography,” J. Biomed. Opt. 14(3), 034040 (2009).
[Crossref]
N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan, “Incorporating prior domain knowledge into deep neural networks,” in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 36–45.
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
A. Nunez, V. Jones, K. Schulz-Costello, and D. Schmolze, “Accuracy of gross intraoperative margin assessment for breast cancer: Experience since the SSO-ASTRO margin consensus guidelines,” Sci. Rep. 10(1), 17344–173449 (2020).
[Crossref]
E. Heeg, M. B. Jensen, L. R. Hölmich, A. Bodilsen, R. A. E. M. Tollenaar, A. V. Laenkholm, B. V. Offersen, B. Ejlertsen, M. A. M. Mureau, and P. M. Christiansen, “Rates of re-excision and conversion to mastectomy after breast-conserving surgery with or without oncoplastic surgery: A nationwide population-based study,” Br. J. Surg. 107(13), 1762–1772 (2020).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science 179, 423–431 (2021).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
R. J. Gray, B. A. Pockaj, E. Garvey, and S. Blair, “Intraoperative margin management in breast-conserving surgery: A systematic review of the literature,” Ann. Surg. Oncol. 25(1), 18–27 (2018).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and N. Ramakrishnan, “Incorporating prior domain knowledge into deep neural networks,” in 2018 IEEE International Conference on Big Data (Big Data) (IEEE, 2018), pp. 36–45.
L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput. 58(6), 1251–1264 (2020).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive review,” Neural Comput. 29(9), 2352–2449 (2017).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
A. S. B. Reddy and D. S. Juliet, “Transfer learning with ResNet-50 for malaria cell-image classification,” in 2019 International Conference on Communication and Signal Processing (ICCSP) (IEEE, 2019), pp. 0945–0949.
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
C. Dahlbäck, J. Manjer, M. Rehn, and A. Ringberg, “Determinants for patient satisfaction regarding aesthetic outcome and skin sensitivity after breast-conserving surgery,” World J. Surg. Oncol. 14(1), 303 (2016).
[Crossref]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016), pp. 770–778.
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
C. Dahlbäck, J. Manjer, M. Rehn, and A. Ringberg, “Determinants for patient satisfaction regarding aesthetic outcome and skin sensitivity after breast-conserving surgery,” World J. Surg. Oncol. 14(1), 303 (2016).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: Fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron. 20(2), 272–288 (2014).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
D. Sarwinda, R. H. Paradisa, A. Bustamam, and P. Anggia, “Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer,” Procedia Computer Science 179, 423–431 (2021).
[Crossref]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
J. Schwarz and H. Schmidt, “Technology for intraoperative margin assessment in breast cancer,” Ann. Surg. Oncol. 27(7), 2278–2287 (2020).
[Crossref]
A. Nunez, V. Jones, K. Schulz-Costello, and D. Schmolze, “Accuracy of gross intraoperative margin assessment for breast cancer: Experience since the SSO-ASTRO margin consensus guidelines,” Sci. Rep. 10(1), 17344–173449 (2020).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
J. Heidkamp, M. Scholte, C. Rosman, S. Manohar, J. J. Fütterer, and M. M. Rovers, “Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review,” Int. J. Cancer 149(3), 635–645 (2021).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
A. Nunez, V. Jones, K. Schulz-Costello, and D. Schmolze, “Accuracy of gross intraoperative margin assessment for breast cancer: Experience since the SSO-ASTRO margin consensus guidelines,” Sci. Rep. 10(1), 17344–173449 (2020).
[Crossref]
J. Schwarz and H. Schmidt, “Technology for intraoperative margin assessment in breast cancer,” Ann. Surg. Oncol. 27(7), 2278–2287 (2020).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput. 58(6), 1251–1264 (2020).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman, K. D. Miller, A. G. Sauer, A. Jemal, and R. L. Siegel, “Breast cancer statistics, 2019,” Ca-Cancer J. Clin. 69(6), 438–451 (2019).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations (ICLR 2015) (Computational and Biological Learning Society, 2015), pp. 1–14.
N. Singla, K. Dubey, and V. Srivastava, “Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network,” J. Biophotonics 12(3), e2018002551 (2019).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
M. T. Garcia, B. S. Mota, N. Cardoso, A. L. C. Martimbianco, M. D. Ricci, F. M. Carvalho, R. Gonçalves, and J. M. Jr. Soares, , and J. R. Filassi, “Accuracy of frozen section in intraoperative margin assessment for breast-conserving surgery: A systematic review and meta-analysis,” PLoS One 16(3), e0248768 (2021).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
J. Heil, K. Breitkreuz, M. Golatta, E. Czink, J. Dahlkamp, J. Rom, F. Schuetz, M. Blumenstein, G. Rauch, and C. Sohn, “Do reexcisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study,” Ann. Surg. Oncol. 19(2), 541–547 (2012).
[Crossref]
A. Rannen Triki, M. B. Blaschko, Y. M. Jung, S. Song, H. J. Han, S. I. Kim, and C. Joo, “Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks,” Comput. Med. Imaging Graph. 69, 21–32 (2018).
[Crossref]
Y. Cui, M. Jia, T. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on effective number of samples,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (IEEE, 2019), pp. 9260–9269.
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. A. South, E. J. Chaney, M. Marjanovic, S. G. Adie, and S. A. Boppart, “Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 5(10), 3417–3426 (2014).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
C. Spearman, “The proof and measurement of association between two things,” Am. J. Psychol. 15(1), 72–101 (1904).
[Crossref]
A. Butola, D. K. Prasad, A. Ahmad, V. Dubey, D. Qaiser, A. Srivastava, P. Senthilkumaran, B. S. Ahluwalia, and D. S. Mehta, “Deep learning architecture LightOCT for diagnostic decision support using optical coherence tomography images of biological samples,” Biomed. Opt. Express 11(9), 5017–5031 (2020).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
S. Kansal, S. Goel, J. Bhattacharya, and V. Srivastava, “Generative adversarial network–convolution neural network based breast cancer classification using optical coherence tomographic images,” Laser Phys. 30(11), 115601 (2020).
[Crossref]
N. Singla, K. Dubey, and V. Srivastava, “Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network,” J. Biophotonics 12(3), e2018002551 (2019).
[Crossref]
A. Butola, A. Ahmad, V. Dubey, V. Srivastava, D. Qaiser, A. Srivastava, P. Senthilkumaran, and D. S. Mehta, “Volumetric analysis of breast cancer tissues using machine learning and swept-source optical coherence tomography,” Appl. Opt. 58(5), A135–A141 (2019).
[Crossref]
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis. 115(3), 211–252 (2015).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016), pp. 770–778.
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” Ca-Cancer J. Clin. 71(3), 209–249 (2021).
[Crossref]
C. Koopmansch, J.-C. Noël, C. Maris, P. Simon, M. Sy, and X. Catteau, “Intraoperative evaluation of resection margins in breast-conserving surgery for in situ and invasive breast carcinoma,” Breast Cancer: Basic Clin. Res. 15, 117822342199345 (2021).
[Crossref]
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
E. R. St John, R. Al-Khudairi, H. Ashrafian, T. Athanasiou, Z. Takats, D. J. Hadjiminas, A. Darzi, and D. R. Leff, “Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: A meta-analysis,” Ann. Surg. 265(2), 300–310 (2017).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
A. R. Pradipta, T. Tanei, K. Morimoto, K. Shimazu, S. Noguchi, and K. Tanaka, “Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery,” Adv. Sci. 7(9), 1901519 (2020).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. F. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014 (2008).
[Crossref]
N. V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. 76(6), 064301 (2005).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
Y. Grant, R. Al-Khudairi, E. St John, M. Barschkett, D. Cunningham, R. Al-Mufti, K. Hogben, P. Thiruchelvam, D. J. Hadjiminas, A. Darzi, A. W. Carter, and D. R. Leff, “Patient-level costs in margin re-excision for breast-conserving surgery,” Br. J. Surg. 106(4), 384–394 (2019).
[Crossref]
D. Chicco, N. Tötsch, and G. Jurman, “The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation,” BioData Min. 14(1), 13 (2021).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
A. Bodilsen, K. Bjerre, B. V. Offersen, P. Vahl, B. Ejlertsen, J. Overgaard, and P. Christiansen, “The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: A Danish breast cancer cooperative group study,” Ann. Surg. Oncol. 22(S3), 476–485 (2015).
[Crossref]
R. Jeevan, D. A. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. P. van der Meulen, “Reoperation rates after breast conserving surgery for breast cancer among women in England: Retrospective study of hospital episode statistics,” BMJ [Br. Med. J.] 345, e4505 (2012).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
P. Gong, M. Almasian, G. van Soest, D. M. de Bruin, T. G. van Leeuwen, D. D. Sampson, and D. J. Faber, “Parametric imaging of attenuation by optical coherence tomography: Review of models, methods, and clinical translation,” J. Biomed. Opt. 25(04), 1 (2020).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771–2877111 (2016).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: An overview,” ArXiv200805756 Cs Stat (2020).
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
M. Wang and X. Gong, “Metastatic cancer image binary classification based on ResNet model,” in 2020 IEEE 20th International Conference on Communication Technology (ICCT) (IEEE, 2020), pp. 1356–1359.
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: A review,” J. Biophotonics 8(4), 279–302 (2014).
[Crossref]
W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive review,” Neural Comput. 29(9), 2352–2449 (2017).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
J. Kim, W. Brown, J. R. Maher, H. Levinson, and A. Wax, “Functional optical coherence tomography: Principles and progress,” Phys. Med. Biol. 60(10), R211–R237 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
K. Kaczmarski, P. Wang, R. Gilmore, H. N. Overton, D. M. Euhus, L. K. Jacobs, M. Habibi, M. Camp, M. J. Weiss, and M. A. Makary, “Surgeon re-excision rates after breast-conserving surgery: A measure of low-value care,” J. Am. Coll. Surg. 228(4), 504–512e2 (2019).
[Crossref]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res. 12, 2825–2830 (2011).
S. E. Abe, J. S. Hill, Y. Han, K. Walsh, J. T. Symanowski, L. Hadzikadic-Gusic, T. Flippo-Morton, T. Sarantou, M. Forster, and R. L. White, “Margin re-excision and local recurrence in invasive breast cancer: A cost analysis using a decision tree model,” J. Surg. Oncol. 112(4), 443–448 (2015).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature 585(7825), 357–362 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
W. M. Allen, L. Chin, P. Wijesinghe, R. W. Kirk, B. Latham, D. D. Sampson, C. M. Saunders, and B. F. Kennedy, “Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins,” Biomed. Opt. Express 7(10), 4139–4153 (2016).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric Statistical Methods, Wiley Series in Probability and Statistics (Wiley, 2015), 3rd ed.
M. S. Sabel, J. M. Jorns, A. Wu, J. Myers, L. A. Newman, and T. M. Breslin, “Development of an intraoperative pathology consultation service at a free-standing ambulatory surgical center: Clinical and economic impact for patients undergoing breast cancer surgery,” Am. J. Surg. 204(1), 66–77 (2012).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32 H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran Associates, Inc., 2019), pp. 8024–8035.
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning,” IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
[Crossref]
L. G. Wilke, T. Czechura, C. Wang, B. Lapin, E. Liederbach, D. P. Winchester, and K. Yao, “Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: A report from the national cancer data base, 2004–2010,” JAMA Surg. 149(12), 1296–1305 (2014).
[Crossref]
D. Mojahed, R. S. Ha, P. Chang, Y. Gan, X. Yao, B. Angelini, H. Hibshoosh, B. Taback, and C. P. Hendon, “Fully automated postlumpectomy breast margin assessment utilizing convolutional neural network based optical coherence tomography image classification method,” Acad. Radiol. 27(5), e81–e86 (2020).
[Crossref]
X. Yao, Y. Gan, E. Chang, H. Hibshoosh, S. Feldman, and C. Hendon, “Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT,” Laser Surg. Med. 49(3), 258–269 (2017).
[Crossref]
R. Patel, A. Khan, R. Quinlan, and A. N. Yaroslavsky, “Polarization-sensitive multimodal imaging for detecting breast cancer,” Cancer Res. 74(17), 4685–4693 (2014).
[Crossref]
L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput. 58(6), 1251–1264 (2020).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
X. Xie, J. Niu, X. Liu, Z. Chen, S. Tang, and S. Yu, “A survey on incorporating domain knowledge into deep learning for medical image analysis,” Med. Image Anal. 69, 101985 (2021).
[Crossref]
V. Y. Zaitsev, A. L. Matveyev, L. A. Matveev, A. A. Sovetsky, M. S. Hepburn, A. Mowla, and B. F. Kennedy, “Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances,” J. Biophotonics 14(2), e2020002571 (2021).
[Crossref]
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016), pp. 770–778.
D. Zhu, J. Wang, M. Marjanovic, E. J. Chaney, K. A. Cradock, A. M. Higham, Z. G. Liu, Z. Gao, and S. A. Boppart, “Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 12(5), 3021–3036 (2021).
[Crossref]
K. M. Kennedy, R. Zilkens, W. M. Allen, K. Y. Foo, Q. Fang, L. Chin, R. W. Sanderson, J. Anstie, P. Wijesinghe, A. Curatolo, H. E. I. Tan, N. Morin, B. Kunjuraman, C. Yeomans, S. L. Chin, H. DeJong, K. Giles, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Diagnostic accuracy of quantitative micro-elastography for margin assessment in breast-conserving surgery,” Cancer Res. 80(8), 1773–1783 (2020).
[Crossref]
Q. Fang, L. Frewer, R. Zilkens, B. Krajancich, A. Curatolo, L. Chin, K. Y. Foo, D. D. Lakhiani, R. W. Sanderson, P. Wijesinghe, J. D. Anstie, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Handheld volumetric manual compression-based quantitative microelastography,” J. Biophotonics 13(6), e2019601961 (2020).
[Crossref]
K. Y. Foo, L. Chin, R. Zilkens, D. D. Lakhiani, Q. Fang, R. Sanderson, B. F. Dessauvagie, B. Latham, S. McLaren, C. M. Saunders, and B. F. Kennedy, “Three-dimensional mapping of the attenuation coefficient in optical coherence tomography to enhance breast tissue microarchitecture contrast,” J. Biophotonics 13(6), e2019602011 (2020).
[Crossref]
B. Krajancich, A. Curatolo, Q. Fang, R. Zilkens, B. F. Dessauvagie, C. M. Saunders, and B. F. Kennedy, “Handheld optical palpation of turbid tissue with motion-artifact correction,” Biomed. Opt. Express 10(1), 226–241 (2019).
[Crossref]
W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations (ICLR 2015) (Computational and Biological Learning Society, 2015), pp. 1–14.
T. Nowikiewicz, E. Śrutek, I. Głowacka-Mrotek, M. Tarkowska, A. Żyromska, and W. Zegarski, “Clinical outcomes of an intraoperative surgical margin assessment using the fresh frozen section method in patients with invasive breast cancer undergoing breast-conserving surgery – a single center analysis,” Sci. Rep. 9(1), 13441–134418 (2019).
[Crossref]
A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. S. Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: Results of a multicenter study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]
S. J. Erickson-Bhatt, R. M. Nolan, N. D. Shemonski, S. G. Adie, J. Putney, D. Darga, D. T. McCormick, A. J. Cittadine, A. M. Zysk, M. Marjanovic, E. J. Chaney, G. L. Monroy, F. A. South, K. A. Cradock, Z. G. Liu, M. Sundaram, P. S. Ray, and S. A. Boppart, “Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery,” Cancer Res. 75(18), 3706–3712 (2015).
[Crossref]
F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[Crossref]