Abstract
Angle tolerant transmissive subtractive color filters incorporating a metasurface exploiting hydrogenated amorphous silicon nanopillars (NPs) on a glass substrate were proposed and demonstrated. The achieved transmission efficiency ranged from 75% to 95% at off-resonance wavelengths. For an NP resonator, electric and magnetic-field distributions in conjunction with absorption cross-sections were investigated to confirm a resonant transmission dip, which is primarily governed by the absorption resulting from simultaneous excitation of magnetic and electric dipoles via Mie scattering. The proposed devices exhibit higher angular tolerance and lower crosstalk for the absorption spectra and, therefore, are applicable with photodetectors, image sensors, and imaging/display devices.
© 2019 Chinese Laser Press
PDF Article
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription