Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 7,
  • Issue 1,
  • pp. 64-66
  • (2009)

Influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media

Not Accessible

Your library or personal account may give you access

Abstract

Monte Carlo algorithm and Stokes-Mueller formalism are used to simulate the propagation behavior of polarized light in turbid media. The influence of single scattering and multiple scattering on backscattered Mueller matrix in turbid media is discussed. Single and double scattering photons form the major part of backscattered polarization patterns, while multiple scattering photons present more likely as background. Further quantitative analyses show that single scattering approximation and double scattering approximation are quite accurate when discussing the polarization patterns near the incident point.

© 2009 Chinese Optics Letters

PDF Article
More Like This
Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media

Sebastian Bartel and Andreas H. Hielscher
Appl. Opt. 39(10) 1580-1588 (2000)

Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption

Yong Deng, Shaoqun Zeng, Qiang Lu, Dan zhu, and Qingming Luo
Opt. Express 15(15) 9672-9680 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.