Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 21,
  • Issue 10,
  • pp. 101901-
  • (2023)

Review of advanced progress of χ2-based all-optical devices on thin-film lithium niobate

Not Accessible

Your library or personal account may give you access

Abstract

The technological innovation of thin-film lithium niobate (TFLN) is supplanting the traditional lithium niobate industry and generating a vast array of ultra-compact and low-loss optical waveguide devices, providing an unprecedented prospect for chip-scale integrated optics. Because of its unique strong quadratic nonlinearity, TFLN is widely used to create new coherent light, which significantly promotes all-optical signal processes, especially in terms of speed. Herein, we review recent advances in TFLN, review the thorough optimization strategies of all-optical devices with unique characteristics based on TFLN, and discuss the challenges and perspectives of the developed nonlinear devices.

© 2023 Chinese Laser Press

PDF Article
More Like This
Advances in on-chip photonic devices based on lithium niobate on insulator

Jintian Lin, Fang Bo, Ya Cheng, and Jingjun Xu
Photon. Res. 8(12) 1910-1936 (2020)

Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire

Jatadhari Mishra, Timothy P. McKenna, Edwin Ng, Hubert S. Stokowski, Marc Jankowski, Carsten Langrock, David Heydari, Hideo Mabuchi, M. M. Fejer, and Amir H. Safavi-Naeini
Optica 8(6) 921-924 (2021)

Integrated photonics on thin-film lithium niobate

Di Zhu, Linbo Shao, Mengjie Yu, Rebecca Cheng, Boris Desiatov, C. J. Xin, Yaowen Hu, Jeffrey Holzgrafe, Soumya Ghosh, Amirhassan Shams-Ansari, Eric Puma, Neil Sinclair, Christian Reimer, Mian Zhang, and Marko Lončar
Adv. Opt. Photon. 13(2) 242-352 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved