Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 15,
  • Issue 1,
  • pp. 010006-
  • (2017)

Single-waveguide-based microresonators for optical sensing

Not Accessible

Your library or personal account may give you access

Abstract

Optical biosensors with a high sensitivity and a low detection limit play a highly significant role in extensive scenarios related to our daily life. Combined with a specific numerical simulation based on the transfer matrix and resonance condition, the idea of novel single-waveguide-based microresonators with a double-spiral-racetrack (DSR) shape is proposed and their geometry optimizations and sensing characteristics are also investigated based on the Vernier effect. The devices show good sensing performances, such as a high quality factor of 1.23×105, a wide wavelength range of over 120 nm, a high extinction ratio (ER) over 62.1 dB, a high sensitivity of 698.5 nm/RIU, and a low detection limit of 1.8×10−5. Furthermore, single-waveguide-based resonators can also be built by cascading two DSR structures in series, called twin-DSRs, and the results show that the sensing properties are enhanced in terms of quasi free spectral range (FSR) and ER due to the double Vernier effect. Excellent features indicate that our novel single-waveguide-based resonators have the potential for future compact and highly integrated biosensors.

© 2017 Chinese Laser Press

PDF Article
More Like This
A compound optical microresonator design for self-referencing and multiplexed refractive index sensing

Chunyu Lu, Hamed Nikbakht, Mustafa Karabiyik, Musa Alaydrus, and B. Imran Akca
Opt. Express 29(25) 42215-42224 (2021)

Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared

Benedetto Troia, Ali Z. Khokhar, Milos Nedeljkovic, Jordi Soler Penades, Vittorio M. N. Passaro, and Goran Z. Mashanovich
Opt. Express 22(20) 23990-24003 (2014)

Optical microresonator based on hollow sphere with porous wall for chemical sensing

Hanzheng Wang, Lei Yuan, Cheol-Woon Kim, Qun Han, Tao Wei, Xinwei Lan, and Hai Xiao
Opt. Lett. 37(1) 94-96 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.