Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 17,
  • Issue 3,
  • pp. 030401-
  • (2019)

Ultra-compact four-lane hybrid-integrated ROSA based on three-dimensional microwave circuit design

Not Accessible

Your library or personal account may give you access

Abstract

An ultra-compact hybrid-integration receiver optical subassembly (ROSA) with four channels is demonstrated in our laboratory with the size of 23.3 mm × 6.0 mm × 6.5 mm. The ROSA is comprised of a planar lightwave circuit (PLC) arrayed waveguide grating (AWG) chip, a top-illuminated positive-intrinsic-negative photodetector array chip, and a three-dimensional microwave circuit that is specially designed for compact packaging. For each transmission lane, the −3 dB bandwidth of the ROSA is up to 20 GHz, and the maximum responsivity is up to 0.53 A/W. The proposed package structure can be used for smaller package sizes and would be an easy assembling solution for 100 GbE optical communication devices.

© 2019 Chinese Laser Press

PDF Article
More Like This
Low-cost hybrid integrated 4 × 25  GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer

Lei Liu, Limin Chang, Yingxin Kuang, Zezheng Li, Yang Liu, Huan Guan, Manqing Tan, Yude Yu, and Zhiyong Li
Photon. Res. 7(7) 722-727 (2019)

Low-cost hybrid integrated 4 × 25.78  Gb/s CWDM TOSA for 10  km transmission using DFB-LDs and an arrayed waveguide grating multiplexer

Jun Liu, Qingzhong Huang, Shiqi Tao, Cheng Zeng, and Jinsong Xia
Photon. Res. 6(11) 1067-1073 (2018)

Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer

Toshihide Yoshimatsu, Masahiro Nada, Manabu Oguma, Haruki Yokoyama, Tetsuichiro Ohno, Yoshiyuki Doi, Ikuo Ogawa, Hiroshi Takahashi, and Eiji Yoshida
Opt. Express 20(26) B393-B398 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved