Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-noise amplification of dissipative Kerr soliton microcomb lines via optical injection locking lasers

Not Accessible

Your library or personal account may give you access

Abstract

The dissipative Kerr soliton microcomb provides a promising laser source for wavelength-division multiplexing (WDM) communication systems thanks to its compatibility with chip integration. However, the soliton microcomb commonly suffers from a low-power level due to the intrinsically limited energy conversion efficiency from the continuous-wave pump laser to ultra-short solitary pulses. Here, we exploit laser injection locking to amplify and equalize dissipative Kerr soliton comb lines, superior gain factor larger than 30 dB, and optical-signal-to-noise-ratio (OSNR) as high as 60 dB obtained experimentally, providing a potential pathway to constitute a high-power chip-integrated WDM laser source for optical communications.

© 2021 Chinese Laser Press

PDF Article
More Like This
Phase noise of Kerr soliton dual microcombs

Yong Geng, Xinjie Han, XiaoXu Zhang, Yanlan Xiao, Sirong Qian, Qingsong Bai, Yunru Fan, Guangwei Deng, Qiang Zhou, Kun Qiu, Jing Xu, and Heng Zhou
Opt. Lett. 47(18) 4838-4841 (2022)

Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels

Shun Fujii, Shuya Tanaka, Tamiki Ohtsuka, Soma Kogure, Koshiro Wada, Hajime Kumazaki, Shun Tasaka, Yosuke Hashimoto, Yuta Kobayashi, Tomohiro Araki, Kentaro Furusawa, Norihiko Sekine, Satoki Kawanishi, and Takasumi Tanabe
Opt. Express 30(2) 1351-1364 (2022)

Enhancing the long-term stability of dissipative Kerr soliton microcomb

Yong Geng, Wenwen Cui, Jingwen Sun, Xinxin Chen, Xiaojie Yin, Guangwei Deng, Qiang Zhou, and Heng Zhou
Opt. Lett. 45(18) 5073-5076 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved