Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 20,
  • Issue 1,
  • pp. 011602-
  • (2022)

Chemically engineered dendrite growth of uniform monolayers MoS2 for enhanced photoluminescence [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

Large area and uniform monolayer MoS2 is of great importance for optoelectronic devices but is commonly suffering from rather weak photoluminescence. Here, by engineering the concentration profiles of gaseous chemicals through extra trace amounts of water, we demonstrate the uniform dendrite-type growth of monolayer MoS2 unraveled by spatially resolved fluorescence spectroscopy, which exhibits macroscopic monolayer flakes (up to centimeter scale) with photoluminescence intensity of orders of magnitude higher than conventional chemical vapor deposition monolayer MoS2. Both spectroscopic evidence and theoretical models reveal that the fast-fractal dendrite growth can be ascribed to the extra introduced water sources that generate sufficient aqueous gas around the S-poor regions nearby the central-axis zone, leading to highly efficient Mo sources transport, accelerated S atom corrosion nearby grain edges, and/or defect sites, as well as enhanced photoemission intensity. Our results may provide new insight for high throughput fabrication of MoS2 monolayers with high yield photoluminescence efficiency.

© 2022 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved