Abstract
Controlling architecture of hierarchical microstructures in liquid crystals (LCs) plays a crucial role in the development of novel soft-matter-based devices. Chiral LC fingerprints are considered as a prospective candidate for various applications; however, the efficient and real-time command of fingerprint landscapes still needs to be improved. Here, we achieve elaborate rotational fingerprint superstructures via dual photopatterning semifree chiral LC films, which combine the photoalignment technique and a dynamic light patterning process. An intriguing spatial-temporal rotational behavior is presented during the patterning of chiral superstructures. This work opens new avenues for the applications of chiral LCs in soft actuators, sensing, and micromanufacturing.
© 2023 Chinese Laser Press
PDF Article
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription