Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 4,
  • Issue 5,
  • pp. 272-274
  • (2006)

Supervised non-negative matrix factorization based latent semantic image indexing

Not Accessible

Your library or personal account may give you access

Abstract

A novel latent semantic indexing (LSI) approach for content-based image retrieval is presented in this paper. Firstly, an extension of non-negative matrix factorization (NMF) to supervised initialization is discussed. Then, supervised NMF is used in LSI to find the relationships between low-level features and high-level semantics. The retrieved results are compared with other approaches and a good performance is obtained.

© 2006 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved