Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 2,
  • Issue 5,
  • pp. 453-459
  • (2018)

Heterogeneous Computation on Mobile Processor for Real-time Signal Processing and Visualization of Optical Coherence Tomography Images

Open Access Open Access

Abstract

We have developed a high-performance signal-processing and image-rendering heterogeneous computation system for optical coherence tomography (OCT) on mobile processor. In this paper, we reveal it by demonstrating real-time OCT image processing using a Snapdragon 800 mobile processor, with the introduction of a heterogeneous image visualization architecture (HIVA) to accelerate the signal-processing and image-visualization procedures. HIVA has been designed to maximize the computational performances of a mobile processor by using a native language compiler, which targets mobile processor, to directly access mobile-processor computing resources and the open computing language (OpenCL) for heterogeneous computation. The developed mobile image processing platform requires only 25 ms to produce an OCT image from 512 × 1024 OCT data. This is 617 times faster than the naïve approach without HIVA, which requires more than 15 s. The developed platform can produce 40 OCT images per second, to facilitate real-time mobile OCT image visualization. We believe this study would facilitate the development of portable diagnostic image visualization with medical imaging modality, which requires computationally expensive procedures, using a mobile processor.

© 2018 Optical Society of Korea

PDF Article

References

  • View by:

  1. E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
    [Crossref]
  2. Y.-C. Ahn, Y.-G. Chae, S. S. Hwang, B.-K. Chun, M. H. Jung, S. J. Nam, H.-Y. Lee, J. M. Chung, C. Oak, E.-K. Park, "In vivo optical coherence tomography imaging of the mesothelium using developed window models," J. Opt. Soc. Korea 19, 69‒73 (2015)
    [Crossref]
  3. R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
    [Crossref]
  4. P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
    [Crossref]
  5. N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, J. Kim, "Development of SD-OCT for imaging the in vivo human tympanic membrane," J. Opt. Soc. Korea 15, 74‒77 (2011)
    [Crossref]
  6. G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365‒6370 (2009)
    [Crossref]
  7. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)
  8. J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
    [Crossref]
  9. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68‒72 (2013)
    [Crossref]
  10. Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506‒060506-3 (2009)
    [Crossref]
  11. Y. Huang, X. Liu, J. U. Kang, "Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units," Biomed. Opt. Express 3, 2162‒2174 (2012)
    [Crossref]
  12. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
    [Crossref]
  13. S. Dong, K. Guo, P. Nanda, R. Shiradkar, G. Zheng, "FPscope: a field-portable high-resolution microscope using a cellphone lens," Biomed. Opt. Express 5, 3305‒3310 (2014)
    [Crossref]
  14. T. Li, M. Duan, K. Li, G. Yu, Z. Ruan, "Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy," Biomed. Opt. Express 6, 3431‒3436 (2015)
    [Crossref]
  15. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, W. Steenbergen, "Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging," Opt. Express 22, 26365‒26374 (2014)
    [Crossref]
  16. D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
    [Crossref]
  17. X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
    [Crossref]
  18. S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
    [Crossref]
  19. F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
    [Crossref]
  20. .
  21. G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)
  22. R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
    [Crossref]

2016 (2)

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
[Crossref]

2015 (6)

Y.-C. Ahn, Y.-G. Chae, S. S. Hwang, B.-K. Chun, M. H. Jung, S. J. Nam, H.-Y. Lee, J. M. Chung, C. Oak, E.-K. Park, "In vivo optical coherence tomography imaging of the mesothelium using developed window models," J. Opt. Soc. Korea 19, 69‒73 (2015)
[Crossref]

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

T. Li, M. Duan, K. Li, G. Yu, Z. Ruan, "Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy," Biomed. Opt. Express 6, 3431‒3436 (2015)
[Crossref]

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

2014 (2)

2013 (2)

N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68‒72 (2013)
[Crossref]

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

2012 (1)

2011 (3)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, J. Kim, "Development of SD-OCT for imaging the in vivo human tympanic membrane," J. Opt. Soc. Korea 15, 74‒77 (2011)
[Crossref]

2010 (1)

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

2009 (2)

G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365‒6370 (2009)
[Crossref]

Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506‒060506-3 (2009)
[Crossref]

2008 (2)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
[Crossref]

Ahn, Y.-C.

Atry, F.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Aum, J.

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

Barreto, J. P.

R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
[Crossref]

Beg, M. F.

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

Boppart, S. A.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

Brands, P.

Brodnick, S. K.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Chae, Y.-G.

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

Chen, G.

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

Chen, Z.

G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365‒6370 (2009)
[Crossref]

X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
[Crossref]

Cho, N. H.

Chun, B.-K.

Chung, J. M.

Daoudi, K.

Dong, S.

Duan, M.

Falcao, G.

R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
[Crossref]

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

Frye, S.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Gibson, E.

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

Guo, K.

Hajizadeh, F.

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

Han, J.-H.

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

Huang, Y.

Hwang, S. S.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

Itagaki, T.

Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506‒060506-3 (2009)
[Crossref]

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

Jeong, H.

Jeong, J.

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

Jung, M. H.

Jung, U.

Jung, W.

N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, J. Kim, "High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging," J. Opt. Soc. Korea 17, 68‒72 (2013)
[Crossref]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

Kafieh, R.

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

Kang, H. W.

Kang, J. U.

Kim, J.

Kim, J.-H.

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

Kim, S.

Kohl, A.

Kwon, H. I.

Lebed, E.

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

Lee, H.-Y.

Lee, S.

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

Li, D.

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

Li, K.

Li, P.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Li, T.

Liu, A.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Liu, G.

Liu, X.

Mehta, D. D.

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

Melo, R.

R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
[Crossref]

Nam, S. J.

Nanda, P.

Nazir, N. T.

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

Oak, C.

Oh, J.

Ommani, M.

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

Park, E.-K.

Pashaie, R.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Rabbani, H.

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

Rabot, O.

Richner, T. J.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Ruan, Z.

Rugonyi, S.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Sarunic, M. V.

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

Shen, X.

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

Shi, L.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Shiradkar, R.

Soehartono, A.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Steenbergen, W.

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

Tisserand, S.

Trohman, R. G.

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

van den Berg, P. J.

Volgman, A. S.

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

Wang, R. K.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Watanabe, Y.

Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506‒060506-3 (2009)
[Crossref]

Williams, J.

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

Wu, B.

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

Xie, T.

Xu, X.

X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
[Crossref]

Yin, X.

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

Young, M.

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

Yu, G.

Yu, L.

G. Liu, J. Zhang, L. Yu, T. Xie, Z. Chen, "Real-time polarization-sensitive optical coherence tomography data processing with parallel computing," Appl. Opt. 48, 6365‒6370 (2009)
[Crossref]

X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
[Crossref]

Zhang, J.

Zheng, G.

Appl. Opt. (1)

Biomed. Opt. Express (3)

IEEE Trans. Biomed. Eng. (7)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, "Handheld optical coherence tomography scanner for primary care diagnostics," IEEE Trans. Biomed. Eng. 58, 741‒744 (2011)
[Crossref]

X. Xu, L. Yu, Z. Chen, "Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography," IEEE Trans. Biomed. Eng. 55, 2753‒2758 (2008)
[Crossref]

S. Lee, E. Lebed, M. V. Sarunic, M. F. Beg, "Exact surface registration of retinal surfaces from 3-D optical coherence tomography images," IEEE Trans. Biomed. Eng. 62, 609‒617 (2015)
[Crossref]

F. Atry, S. Frye, T. J. Richner, S. K. Brodnick, A. Soehartono, J. Williams, R. Pashaie, "Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography," IEEE Trans. Biomed. Eng. 62, 766‒773 (2015)
[Crossref]

E. Gibson, M. Young, M. V. Sarunic, M. F. Beg, "Optic nerve head registration via hemispherical surface and volume registration," IEEE Trans. Biomed. Eng. 57, 2592‒2595 (2010)
[Crossref]

R. Kafieh, H. Rabbani, F. Hajizadeh, M. Ommani, "An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis," IEEE Trans. Biomed. Eng. 60, 2815‒2823 (2013)
[Crossref]

P. Li, X. Yin, L. Shi, A. Liu, S. Rugonyi, R. K. Wang, "Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography," IEEE Trans. Biomed. Eng. 58, 2333‒2338 (2011)
[Crossref]

IEEE Trans. Comput. (1)

G. Chen, X. Shen, B. Wu, D. Li, "Optimizing data placement on GPU memory: A portable approach," IEEE Trans. Comput. 99, 1‒1 (2016)

J. Biomed. Opt. (1)

Y. Watanabe, T. Itagaki, "Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit," J. Biomed. Opt. 14, 060506‒060506-3 (2009)
[Crossref]

J. Electrocardiol. (1)

D. D. Mehta, N. T. Nazir, R. G. Trohman, A. S. Volgman, "Single-lead portable ECG devices: Perceptions and clinical accuracy compared to conventional cardiac monitoring," J. Electrocardiol. 48, 710‒716 (2015)
[Crossref]

J. Opt. Soc. Korea (3)

J. Real Time Image Process. (1)

R. Melo, G. Falcao, J. P. Barreto, "Real-time HD image distortion correction in heterogeneous parallel computing systems using efficient memory access patterns," J. Real Time Image Process. 11, 83‒91 (2016)
[Crossref]

Opt. Commun. (1)

J.-H. Kim, J. Aum, J.-H. Han, J. Jeong, "Optimization of compute unified device architecture for real-time ultrahigh-resolution optical coherence tomography," Opt. Commun. 334, 308‒313 (2015)
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, D. X. Hammer, "Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array," Rev. Sci. Instrum. 79, 114301 (2008)

Other (1)

.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved