Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 5,
  • Issue 6,
  • pp. 617-626
  • (2021)

GPU-based Monte Carlo Photon Migration Algorithm with Path-partition Load Balancing

Open Access Open Access

Abstract

A parallel Monte Carlo photon migration algorithm for graphics processing units that implements an improved load-balancing strategy is presented. Conventional parallel Monte Carlo photon migration algorithms suffer from a computational bottleneck due to their reliance on a simple load-balancing strategy that does not take into account the different length of the mean free paths of the photons. In this paper, path-partition load balancing is proposed to eliminate this computational bottleneck based on a mathematical formula that parallelizes the photon path tracing process, which has previously been considered non-parallelizable. The performance of the proposed algorithm is tested using three-dimensional photon migration simulations of a human skin model.

© 2021 Optical Society of Korea

PDF Article
More Like This
Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media

Xu Jiang, Yong Deng, Zhaoyang Luo, Kan Wang, Lichao Lian, Xiaoquan Yang, Igor Meglinski, and Qingming Luo
Opt. Express 22(26) 31948-31965 (2014)

Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units

Qianqian Fang and David A. Boas
Opt. Express 17(22) 20178-20190 (2009)

GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues

Nunu Ren, Jimin Liang, Xiaochao Qu, Jianfeng Li, Bingjia Lu, and Jie Tian
Opt. Express 18(7) 6811-6823 (2010)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.