Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 6,
  • Issue 3,
  • pp. 288-296
  • (2022)

Optical Signal Sampling Based on Compressive Sensing with Adjustable Compression Ratio

Open Access Open Access

Abstract

We propose and experimentally demonstrate a novel photonic compressive sensing (CS) scheme for acquiring sparse radio frequency signals with adjustable compression ratio in this paper. The sparse signal to be measured and a pseudo-random binary sequence are modulated on consecutively connected chirped pulses. The modulated pulses are compressed into short pulses after propagating through a dispersive element. A programmable optical filter based on spatial light modulator is used to realize spectral segmentation and demultiplexing. After spectral segmentation, the compressed pulses are transformed into several sub-pulses and each of them corresponds to a measurement in CS. The major advantage of the proposed scheme lies in its adjustable compression ratio, which enables the system adaptive to the sparse signals with variable sparsity levels and bandwidths. Experimental demonstration and further simulation results are presented to verify the feasibility and potential of the approach.

© 2022 Optical Society of Korea

PDF Article
More Like This
Photonic compressive sensing of sparse radio frequency signals with a single dual-electrode Mach–Zehnder modulator

Bo Yang, Shuna Yang, Zizheng Cao, Jun Ou, Yanrong Zhai, and Hao Chi
Opt. Lett. 45(20) 5708-5711 (2020)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.