Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 7,
  • Issue 1,
  • pp. 83-89
  • (2023)

Switchable Spatial Control of Linearly Polarized Light Based on a Liquid-crystal Optical Waveguide

Open Access Open Access

Abstract

This study reports a structure, based on a liquid-crystal (LC) core optical waveguide, for the switchable spatial control of linearly polarized light. The refractive indices of both left and right isotropic claddings in the waveguide are between the two principal-axis indices of the nematic liquid crystal (NLC). Numerical simulations demonstrate that the proposed structure can be operated in transmission mode or as an attenuator by controlling the on and off states of the applied voltage, whether the initial excitation is transverse electric (TE) linearly polarized light or transverse magnetic (TM) linearly polarized light. The design can also be used as an integrated optical polarizer, since only one type of linearly polarized light is always permitted to pass through the core zone of the NLC optical waveguide.

© 2023 Optical Society of Korea

PDF Article
More Like This
Optical switch based on the electrically controlled liquid crystal interface

Andrei A. Komar, Alexei L. Tolstik, Elena A. Melnikova, and Alexander A. Muravsky
Appl. Opt. 54(16) 5130-5135 (2015)

Optically isotropic switchable microlens arrays based on liquid crystal

You-Jin Lee, Chang-Jae Yu, Jae-Ho Lee, Ji-Ho Baek, Youngsik Kim, and Jae-Hoon Kim
Appl. Opt. 53(17) 3633-3636 (2014)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.