Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 7,
  • Issue 2,
  • pp. 183-190
  • (2023)

A Wide-field-of-view Table-ornament Display Using Electronic Holography

Open Access Open Access

Abstract

Three-dimensional (3D) displays provide a significant advantage over traditional 2D displays by offering realistic images, and table-style displays in particular are ideal for generating 3D images that appear to float above a table. These systems are based on multiview displays, and are typically operated using temporal or spatial multiplexing methods to expand the viewing zone (VZ). The VZ is an expanded space that results from merging the sub-viewing zones (SVZs) from which an individual view is made. To increase the viewing angle, many SVZs are usually required. In this paper, we propose a table-ornament electronic holographic display that utilizes 3f parabolic mirrors. In holography, the VZ is not simply expanded but synthesized from SVZs to implement continuous motion parallax. Our proposed system is small enough to be applied as a table ornament, in contrast to traditional tabletop displays that are large and not easily portable. By combining multiview and holographic technologies, our system achieves continuous motion parallax. Specifically, our system projects 340 views using a time-multiplexing method over a range of 240 degrees.

© 2023 Optical Society of Korea

PDF Article
More Like This
Multiview and light-field reconstruction algorithms for 360° multiple-projector-type 3D display

Qing Zhong, Yifan Peng, Haifeng Li, Chen Su, Weidong Shen, and Xu Liu
Appl. Opt. 52(19) 4419-4425 (2013)

Table screen 360-degree holographic display using circular viewing-zone scanning

Tatsuaki Inoue and Yasuhiro Takaki
Opt. Express 23(5) 6533-6542 (2015)

Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.