Abstract
The ±1-order Kelly sidebands with dispersion-dependent spacing of mode-locking fiber lasers are investigated for frequency-tunable terahertz signal generation. The principle of dispersion dependence of Kelly sidebands is analyzed. A new method, which is a dispersion-management mechanism introduced into the fiber-laser cavity, is proposed to generate Kelly sidebands with widely tunable wavelength spacing. A spacing tuning range of up to 28.46 nm of the ±1-order Kelly sidebands is obtained in simulation. Using the data of the optical spectrum with dispersion-dependent Kelly sidebands, the frequency spectrum of generated terahertz signals is calculated. Consequently, the signal frequency can be changed from 0.09 to 2.27 THz.
PDF Article
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription