Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Current Optics and Photonics
  • Vol. 7,
  • Issue 6,
  • pp. 721-731
  • (2023)

Azimuthal Angle Scan Distribution, Third Order Response, and Optical Limiting Threshold of the Bismarck Brown Y:PMMA Film

Open Access Open Access

Abstract

This paper studies various roughness parameters, besides waviness, texture, and nonlinear parameters of Bismarck brown Y (BBY)-doped Poly(methyl methacrylate) (PMMA) films based on the computed values of optical limiting (OL) threshold power and nonlinear refractive index. The films’ morphology, grain size, and absorption spectra were investigated using atomic force microscopy in conjunction with ultraviolet-visible (UV-Vis) spectrophotometer. The particle size of the films ranged between 4.11–4.51 mm and polymer films showed good homogeneity and medium roughness, ranging from 1.11–4.58 mm. A polymer film’s third-order nonlinear optical features were carried out using the Z-scan methodology. The measurements were obtained by a continuous wave produced from a solid-state laser with a 532 nm wavelength. According to the results, BBY has a nonlinear refractive index of 10−6 cm2/W that is significantly negative and nonlinear. The optical limiting thresholds are roughly 10.29, 13.52, and 18.71 mW, respectively. The shift of nonlinear optical features with the film’s concentration was found throughout the experiment Additionally, we found that the polymer samples have outstanding capabilities for restricting the amount of optical power that may be transmitted through them. We propose that these films have the potential to be used in a wide variety of optoelectronic applications, including optical photodetectors and optical switching.

PDF Article

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.