Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 19,
  • Issue 4,
  • pp. 340-345
  • (2015)

Application-Centric, Energy-Efficient Network Architecture ACTION, Based on Virtual Optical Slice Core and Deterministic Optical Access Network

Open Access Open Access

Abstract

The Internet traffic is forecasted to grow at a compound annual rate of 21 % from 2013 to 2018, according to surveys carried out by Cisco [1]. Network resources are significantly over-provisioned in today's networks, and it is quite common to see link utilization in the 30-40% range [2]. Additionally, the multi-media services have widely divergent bandwidth and Quality of Experience (QoE) requirements. Unfortunately, the huge transmission capacity will increase the power consumption of network equipment [3]. Applications Coordinated with Transport, Internet Protocol and Optical Networks (ACTION) [4] has been proposed to realize a multi-QoE, application-centric, and highly energy-efficient network that leverages flexible elastic optical network technologies [5-7]. This paper provides key network technologies for realizing the ACTION, which are a virtual optical slice core network and a Time Division Multiplexing (TDM)-based deterministic active optical access network.

© 2015 Optical Society of Korea

PDF Article
More Like This
Flexible low-latency metro-access converged network architecture based on optical time slice switching

Jialong Li, Nan Hua, Zhizhen Zhong, Yufang Yu, Xiaoping Zheng, and Bingkun Zhou
J. Opt. Commun. Netw. 11(12) 624-635 (2019)

Virtual Optical Bus: An Efficient Architecture for Packet-Based Optical Transport Networks

Ahmad Rostami and Adam Wolisz
J. Opt. Commun. Netw. 2(11) 901-914 (2010)

Future Internet Infrastructure Based on the Transparent Integration of Access and Core Optical Transport Networks

T. Orphanoudakis, H.-C. Leligou, E. Kosmatos, and A. Stavdas
J. Opt. Commun. Netw. 1(2) A205-A218 (2009)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.