Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of the Optical Society of Korea
  • Vol. 19,
  • Issue 5,
  • pp. 508-513
  • (2015)

Highly Flexible Touch Screen Panel Fabricated with Silver Nanowire Crossing Electrodes and Transparent Bridges

Open Access Open Access

Abstract

A capacitive-type touch screen panel (TSP) composed of silver nanowire (AgNW) crossing electrodes and transparent bridge structures was fabricated on a polycarbonate film. The transparent bridge structure was formed with a stack of Al-doped ZnO (AZO) electrodes and SU-8 insulator. The stable and robust continuity of the bridge electrode over the bridge insulator was achieved by making the side-wall slope of the bridge insulator low and depositing the conformal AZO film with atomic layer deposition. With an extended exposure time of photolithography, the lower part of the SU-8 layer around the region uncovered by the photomask can be exposed enough to the UV light scattered from the substrate. This leads to the low side-wall slope of the bridge insulator. The fabricated TSP sample showed a large capacitance change of 22.71% between with and without touching. Our work supplies the technological clue for ensuring long-term reliability to the highly flexible and transparent TSP made by using conventional fabrication processes.

© 2015 Optical Society of Korea

PDF Article
More Like This
Meter-scale transparent conductive circuits based on silver nanowire networks for rigid and flexible transparent light-emitting diode screens

Liu Yang, Xinan Xu, Yi Yuan, Zhihao Li, and Sailing He
Opt. Mater. Express 9(12) 4483-4496 (2019)

Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se2/ZnS thin film solar cells

Xiao-Hui Tan, Yu Chen, and Ye-Xiang Liu
Appl. Opt. 53(15) 3273-3277 (2014)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.