Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 2,
  • Issue 2,
  • pp. 130-137
  • (2006)

Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

© 2006 IEEE

PDF Article
More Like This
Angle-stable RGBW top-emitting organic light-emitting devices with Ag/Ge/Ag cathode

Shihao Liu, Jian Liu, Xuemei Wen, Yang Liu, Zhaoying Chen, Yongming Yin, Letian Zhang, and Wenfa Xie
Opt. Lett. 38(10) 1742-1744 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved