Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 3,
  • Issue 2,
  • pp. 238-244
  • (2007)

Organic Light-Emitting Diodes Fabricated by a Solution Process and Their Stress Tolerance

Not Accessible

Your library or personal account may give you access

Abstract

Polymeric organic light-emitting diodes (PLEDs) were fabricated by solution process, and their stress tolerance were studied by continually pressing the PLEDs fabricated on polymeric substrates. Two types of host materials, poly(n- vinylcarbazole) (PVCz) and starburst small-molecule 1,3,5- tris[4-(diphenylamino)phenyl] benzene (TDAPB) were employed as host for the PLEDs doped with phosphorescent materials. Two iridium complexes are employed as dopants, fac-tris(2-phenyl- pyridine) iridium [Ir(ppy)<sub>3</sub>] and tris(1-phenylisoquinoline) iridium (III) [Ir(piq)<sub>3</sub>] for green-emitting and red-emitting phosphorescent materials, respectively. The external quantum efficiency and power efficiency were 8.2% and 17.3 lm/W, and 6.3% and 3.0 lm/W for a device with Ir(ppy)<sub>3</sub> doped TDAPB and Ir(piq)<sub>3</sub> doped PVCz-TDAPB mixture host, respectively. Pushing tolerance tests were performed for PLEDs fabricated on polymeric substrates. The device continued to emit light after a pushing test consisting of more than 20 000 steps. In this paper, we discuss the fabrication and characteristics of PLEDs prepared using starburst TDAPB and phosphorescent materials for green and red emissive materials by a solution process. We discuss the pushing tolerance for PLEDs fabricated on a polymeric substrate.

© 2007 IEEE

PDF Article
More Like This
Solution-processed single-emitting-layer white organic light-emitting diodes based on small molecules with efficiency/CRI/color-stability trade-off

Qiang Fu, Jiangshan Chen, Hongmei Zhang, Changsheng Shi, and Dongge Ma
Opt. Express 21(9) 11078-11085 (2013)

High color rending index and high-efficiency white organic light-emitting diodes based on the control of red phosphorescent dye-doped hole transport layer

M. Y. Zhang, F. F. Wang, N. Wei, P. C. Zhou, K. J. Peng, J. N. Yu, Z. X. Wang, and B. Wei
Opt. Express 21(S1) A173-A178 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.