Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 6,
  • Issue 8,
  • pp. 312-317
  • (2010)

Fringing Field Effects in Thin-Film Silicon Transistors on Glass

Not Accessible

Your library or personal account may give you access

Abstract

A new process enabling the transfer of a single-crystal silicon film to a glass substrate has been developed allowing for the creation of fully crystalline thin-film silicon-on-glass (SiOG) transistors. The dominant 2-D effect in SiOG transistors results from fringing electric field lines emanating through the glass substrate between the source, drain, and thin-film channel regions. The fringing field leads to a shift in the flatband or threshold voltage in a similar manner to drain-induced barrier lowering. The fringing field effect can lead to an 11% shift in flatband for devices with channel length of 4 $\mu{\rm m}$ and a nominal flatband of $-$1 V. A compact model for the fringing field in these devices has been developed using conformal mapping techniques that capture the dependence on both channel length and the relative size of the source and drain electrodes. The model accurately predicts the influence of the fringing field on subthreshold drain current for SiOG PFETs operating in accumulation. The model is validated against the 2-D device simulator Silvaco Atlas.

© 2010 IEEE

PDF Article
More Like This
Photosensitive cadmium telluride thin-film field-effect transistors

Gwangseok Yang, Donghwan Kim, and Jihyun Kim
Opt. Express 24(4) 3607-3612 (2016)

Channel-length-dependent performance of photosensitive organic field-effect transistors

Yingquan Peng, Fangzhi Guo, Hongquan Xia, Wenli Lv, Lei Sun, Sunan Xu, Huabiao Zhu, Xinda Chen, Chen Liu, Ying Wang, and Feiping Lu
Appl. Opt. 58(6) 1319-1326 (2019)

Near-infrared femtosecond laser crystallized poly-Si thin film transistors

Yi-Chao Wang, Jia-Min Shieh, Hsiao-Wen Zan, and Ci-Ling Pan
Opt. Express 15(11) 6982-6987 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved