Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 7,
  • Issue 5,
  • pp. 242-249
  • (2011)

Enhancement and Saturation Phenomena on Luminous Current and Power Efficiencies of Organic Light-Emitting Devices by Attaching Microlens Array Films

Not Accessible

Your library or personal account may give you access

Abstract

Compared to the OLED with planar substrate, the luminous current efficiency and luminous power efficiency of the device are shown 25% and 36% enhancement, respectively, by attaching the microlens array film (MAF) having a fill factor of 0.788 and a height ratio of 0.46. Both the luminous current efficiency and luminous power efficiency of the organic light-emitting device (OLED) increased monotonically with increasing the fill factor of MAFs, regardless of their arrangements. However, the curve-fitting equation of the luminous power efficiency has a negative second-order term, which shows a saturation phenomenon. Based on the experimentally verified configuration, simulation showed that the luminous current and power efficiencies also increase along with increasing height ratio and they were found to have more pronounced saturation phenomena. As for the spectral characteristics, the peak wavelength of the planar OLED spectra got blue-shift and the full-width-at-half-maximum (FWHM) of its spectra decreased with increasing the viewing angles due to the microcavity theories. After MAFs are attached to the OLED, the FWHM of the OLED spectra decreased linearly by increasing the fill factor of the MAFs. We also observe blue shifts at different viewing angles which is the evidence that the waveguiding modes are being extracted. The saturation phenomena of efficiency enhancement imply that high fill factor and large height ratio of MAFs will certainly benefit for efficiency enhancement, however, full factor cases are not always the most desirable. Optimal fill factor and height ratio, which may be less than unity, will gain the best efficiency enhancement, suffer from less color deviation, and make fabrication easier.

© 2011 IEEE

PDF Article
More Like This
Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices

Kuan-Yu Chen, Yung-Ting Chang, Yu-Hsuan Ho, Hoang-Yan Lin, Jiun-Haw Lee, and Mao-Kuo Wei
Opt. Express 18(4) 3238-3243 (2010)

Partitioning pixel of organic light-emitting devices with center-hollowed microlens-array films for efficiency enhancement

Kuan-Yu Chen, Yu-Ting Hsiao, Hoang Yan Lin, Mao-Kuo Wei, and Jiun-Haw Lee
Opt. Express 18(18) 18685-18690 (2010)

Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices

Hoang-Yan Lin, Yu-Hsuan Ho, Juin-Haw Lee, Kuan-Yu Chen, Jheng-Hao Fang, Sheng-Chih Hsu, Mao-Kuo Wei, Hung-Yi Lin, Jen-Hui Tsai, and Tung-Chuan Wu
Opt. Express 16(15) 11044-11051 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved