Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 28,
  • Issue 4,
  • pp. 547-556
  • (2010)

Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM

Not Accessible

Your library or personal account may give you access

Abstract

We discuss the generation, wavelength-division-multiplexed (WDM) long-haul transmission, and coherent detection of 112-Gb/s polarization-division-multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM) at a line rate of 14 Gbaud and spectral efficiencies beyond 4 b/s/Hz. We describe the (off-line) digital signal processing and blind filter adaptation algorithms used in our intradyne receiver and characterize its performance using both simulated and measured 16-QAM waveforms. We measure a required optical signal-to-noise ratio of 20.2 dB (0.1-nm reference bandwidth; $10^{-3}$ bit-error ratio), 3.2-dB off the theoretical limit. We study the effects of finite analog-to-digital converter resolution, laser frequency offset, laser phase noise, and narrowband optical filtering. Our experiments on a 25-GHz WDM grid (4.1-b/s/Hz spectral efficiency) reveal a 1-dB penalty after 7 passes though reconfigurable optical add/drop multiplexers (ROADMs) and an achievable transmission reach of 1022 km of uncompensated standard single-mode fiber. At a spectral efficiency of 6.2 b/s/Hz (16.67-GHz WDM channel spacing) a transmission reach of 630 km is attained.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved