Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 2,
  • pp. 215-221
  • (2011)

Nonlinear Electrical Compensation for the Coherent Optical OFDM System

Not Accessible

Your library or personal account may give you access

Abstract

A main drawback of Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) system is its sensitivity to fiber nonlinearity. Nonlinear electrical equalizer based on Volterra model has been demonstrated capable of compensating fiber nonlinear distortion in an OOK or PSK optical communication system. However, the implementation complexity of a Volterra model based electrical equalizer prohibits its deployment in a real-life CO-OFDM system. In this paper, we demonstrate that the number of kernels of a Volterra model based equalizer can be significantly reduced using the modified Gram-Schmidt method with reorthogonalization techniques. The resulting “sparse” Volterra model based electrical equalizer and the electrical equalizer based on the “full” Volterra model have comparable performance and can compensate intra-channel nonlinearity of a 16-QAM 100 Gbit/s CO-OFDM System.

© 2010 IEEE

PDF Article
More Like This
Comparison of DSP-based nonlinear equalizers for intra-channel nonlinearity compensation in coherent optical OFDM

Elias Giacoumidis, Sofien Mhatli, Tu Nguyen, Son T. Le, Ivan Aldaya, Mary E. McCarthy, Andrew D. Ellis, and Benjamin J. Eggleton
Opt. Lett. 41(11) 2509-2512 (2016)

Modeling and compensation of transmitter nonlinearity in coherent optical OFDM

Siamak Amiralizadeh, An T. Nguyen, and Leslie A. Rusch
Opt. Express 23(20) 26192-26207 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.