Abstract
© 2016 OAPA
PDF Article© 2016 OAPA
PDF Article
M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.
F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.
L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.
R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .
G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .
S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.
M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.
N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.
J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.
N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.
R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .
N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.
S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.
N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.
M. Bozzetti, A. D’Orazio, M. De Sario, V. Petruzzelli, F. Prudenzano, and F. Renna, “Tapered photonic bandgap microstrip lowpass filters: Design and realisation,” IEE Proc., Microw., Antennas Propag., vol. 150, no. 6, pp. 459–462, 2003.
N. P. Barnes and R. E. Allen, “Room temperature Dy:YLF laser operation at 4.34 μm,” IEEE J. Quantum Electron., vol. 27, no. 2, pp. 277–282, 1991.
L. Mesciaet al., “Optimization of the design of high power Er3+/Yb3+-Codoped fiber amplifiers for space missions by means of particle swarm approach,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 5, pp. 484–491, 2014.
R. R. Gattasset al., “Infrared fiber N $\times$ 1 multimode combiner,” IEEE Photon. J., vol. 5, no. 5, 2013, Art. no. .
R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 mm,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 123–125, 2008.
M. C. Falconiet al., “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ PCF fiber laser,” IEEE Photon. Technol. Lett., vol. 28, no. 18, pp. 1984–1987, 2016.
N. Y. Voo, J. K. Sahu, and M. Ibsen, “345-mW 1836-nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett., vol. 17, no. 12, pp. 2550–2552, 2005.
G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 273–284, 2008.
G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater., vol. 45, no. 13, p. 1439–1460, 2009.
F. Prudenzanoet al., “Optimization and characterization of rare-earth-doped photonic-crystal-fiber amplifier using genetic algorithm,” J. Lightw. Technol., vol. 25, no. 8, pp. 2135–2142, 2007.
G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of double-clad erbium-doped holey fiber amplifier,” J. Non-Cryst. Solids, vol. 351, no. 21–23, pp. 1840–1845, 2005.
F. Prudenzanoet al., “Design of Er3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids, vol. 355, no. 18–21, pp. 1145–1148, 2009.
G. Palmaet al., “Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm,” Opt. Eng., vol. 53, no. 7, 2013, Art. no. .
M. De Sarioet al., “Feasibility of Er3+-doped, Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ chalcogenide microstructured optical fiber amplifiers,” Opt. Laser Technol., vol. 41, no. 1, pp. 99–106, 2009.
F. Prudenzano, L. Mescia, L. Allegretti, V. Moizan, V. Nazabal, and F. Smektala, “Theoretical study of cascade laser in erbium-doped chalcogenide glass fibers,” Opt. Mater., vol. 33, no. 2, pp. 241–245, 2010.
S. Sujeckiet al., “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron., vol. 42, no. 2, pp. 69–79, 2010.
F. Stareckiet al., “Mid-IR optical sensor for CO$_2$ detection based on fluorescence absorbance of Dy3+:Ga$_5$Ge$_2$$_0$Sb$_1$$_0$S$_6$$_5$ fibers,” Sens. Actuators B, Chem., vol. 207, pt. A, no. 5, pp. 518–525, 2015.
J. L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Electronic and Optical Materials Sawston). Cambridge, U.K.: Woodhead Publishing, 2014.
G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego, CA, USA: Academic, 2007.
Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.