Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 12,
  • pp. 4158-4165
  • (2021)

On the Use of Brillouin Scattering to Evaluate Quantum Conversion Efficiency in Yb-doped Optical Fibers

Open Access Open Access

Abstract

A method, based on Brillouin scattering, to evaluate the quantum conversion efficiency (QCE) in Yb-doped optical fibers is designed and tested. An adapted version of the heterodyne approach to measuring the Brillouin spectrum is first used to precisely quantify the temperature change of the fiber upon pumping. Next, a theoretical model based on the thermal conduction equation is constructed in order to simulate the temperature change assuming a QCE of one. Lastly, the QCE value of the fiber can be determined by comparing the experimental and simulation results. Importantly, the analysis can provide insight into the origin of thermal energy in a fiber. Serving in the proof-of-concept measurement, a commercial, lightly Yb-doped fiber is determined to have a QCE of 99.07%. Finally, this result is compared with slope efficiency measurements from a linear cavity laser using the same fiber as the active medium. Excellent agreement between the two measurements demonstrates the feasibility of the approach, with greater accuracy afforded by the Brillouin-based measurement. The proposed method is particularly useful for optical fiber optimization in high-power fiber laser and amplifier applications. It can also be valuable as a sensitive temperature probe in the study of anti-Stokes fluorescence cooling in optical fibers.

PDF Article

References

  • View by:

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 219–241, 2014.
  3. A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.
  4. W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.
  5. P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.
  6. M. N. Zervas, “High power ytterbium-doped fiber lasers - Fundamentals and applications,” Int. J. Mod. Phys. B, vol. 28, no. 12, pp. 1–35, 2014.
  7. L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.
  8. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.
  9. L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .
  10. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.
  11. L. Li, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express, vol. 13, no. 9, 2005, Art. no. .
  12. L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.
  13. M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .
  14. J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.
  15. A. Hemming, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express, vol. 21, no. 4, 2013, Art. no. .
  16. F. Chen, “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters,” Opt. Express, vol. 25, no. 26, 2017, Art. no. .
  17. G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .
  18. N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .
  19. N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.
  20. M. Cavillon, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express, vol. 8, no. 4, pp. 744–760, 2018.
  21. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photon., vol. 1, no. 12, pp. 693–699, 2007.
  22. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron., vol. 35, no. 1, pp. 115–122, 1999.
  23. J. M. Knall, “Experimental investigations of spectroscopy and anti-Stokes fluorescence cooling in Yb-doped silicate fibers,” Proc. SPIE, vol. 10936, 2019, Paper 10936-15. [Online]. Available: https://doi.org/10.1117/12.2510889
  24. J. M. Knall, “Experimental observation of cooling in Yb-doped silica fibers,” Proc. SPIE, vol. 11298, 2020, Paper 112980F. [Online]. Available: https://doi.org/10.1117/12.2548506
  25. J. Knall, “Laser cooling in a silica optical fiber at atmospheric pressure,” Opt. Lett., vol. 45, no. 5, 2020, Art. no. .
  26. J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.
  27. A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .
  28. E. Mobini, “Laser cooling of silica glass,” 2019, arxiv:1910.10609.
  29. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.
  30. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett., vol. 24, no. 15, 1999, Art. no. .
  31. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.
  32. W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.
  33. Y. Fan, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express, vol. 19, no. 16, 2011, Art. no. .
  34. Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.
  35. A. Godet, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica, vol. 4, no. 10, 2017, Art. no. .
  36. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non. Cryst. Solids, vol. 355, no. 7, pp. 403–413, 2009.
  37. B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.
  38. P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .
  39. N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.
  40. P. Pradhan, “The Brillouin gain of vector modes in a few-mode fiber,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.
  41. M. Tuggle, “Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber,” Opt. Mater. X, vol. 1, no. March, 2019, Art. no. .
  42. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Light. Technol., vol. 28, no. 4, pp. 360–364, 2010.
  43. “Thorlabs,” [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336
  44. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.
  45. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .
  46. P. Yan, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng., vol. 45, no. 12, 2006, Art. no. .
  47. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.
  48. G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.
  49. M.-J. Li, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express, vol. 15, no. 13, 2007, Art. no. .
  50. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.
  51. C. C. Baker, “Design solutions for increased thresholds of non-linear processes in silica fiber,” in Proc. Laser Cong. 2019 (ASSL, LAC, LS&C), OSA Tech. Digest (Opt. Soci. of Amer., 2019), 2019, Paper JW2A.9. [Online]. Available: https://doi.org/10.1364/ASSL.2019.JW2A.9
  52. M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

2020 (3)

J. M. Knall, “Experimental observation of cooling in Yb-doped silica fibers,” Proc. SPIE, vol. 11298, 2020, Paper 112980F. [Online]. Available: https://doi.org/10.1117/12.2548506

J. Knall, “Laser cooling in a silica optical fiber at atmospheric pressure,” Opt. Lett., vol. 45, no. 5, 2020, Art. no. .

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

2019 (4)

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

M. Tuggle, “Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber,” Opt. Mater. X, vol. 1, no. March, 2019, Art. no. .

2018 (7)

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

M. Cavillon, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express, vol. 8, no. 4, pp. 744–760, 2018.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

2017 (4)

F. Chen, “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters,” Opt. Express, vol. 25, no. 26, 2017, Art. no. .

P. Pradhan, “The Brillouin gain of vector modes in a few-mode fiber,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

A. Godet, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica, vol. 4, no. 10, 2017, Art. no. .

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

2015 (2)

L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

2014 (2)

M. N. Zervas, “High power ytterbium-doped fiber lasers - Fundamentals and applications,” Int. J. Mod. Phys. B, vol. 28, no. 12, pp. 1–35, 2014.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 219–241, 2014.

2013 (2)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.

A. Hemming, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express, vol. 21, no. 4, 2013, Art. no. .

2011 (2)

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Y. Fan, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express, vol. 19, no. 16, 2011, Art. no. .

2010 (3)

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Light. Technol., vol. 28, no. 4, pp. 360–364, 2010.

2009 (3)

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non. Cryst. Solids, vol. 355, no. 7, pp. 403–413, 2009.

2007 (3)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photon., vol. 1, no. 12, pp. 693–699, 2007.

M.-J. Li, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express, vol. 15, no. 13, 2007, Art. no. .

2006 (1)

P. Yan, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng., vol. 45, no. 12, 2006, Art. no. .

2005 (1)

L. Li, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express, vol. 13, no. 9, 2005, Art. no. .

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

1999 (3)

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron., vol. 35, no. 1, pp. 115–122, 1999.

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett., vol. 24, no. 15, 1999, Art. no. .

1997 (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

1996 (1)

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

1994 (1)

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

Alam, S. U.

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

Amezcua, R.

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

Arora, A.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

Bahl, G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Baker, C. C.

C. C. Baker, “Design solutions for increased thresholds of non-linear processes in silica fiber,” in Proc. Laser Cong. 2019 (ASSL, LAC, LS&C), OSA Tech. Digest (Opt. Soci. of Amer., 2019), 2019, Paper JW2A.9. [Online]. Available: https://doi.org/10.1364/ASSL.2019.JW2A.9

Ballato, A.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

Ballato, J.

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Barnard, G.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

Bernier, M.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

Bigot, L.

L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.

Bowman, S. R.

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron., vol. 35, no. 1, pp. 115–122, 1999.

Bradford, J.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

Brocklesby, W. S.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Bui, T.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

Cain-Skaff, M.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Cavillon, M.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

M. Cavillon, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express, vol. 8, no. 4, pp. 744–760, 2018.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

Chang, Y. M.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Chatigny, S.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Chen, F.

F. Chen, “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters,” Opt. Express, vol. 25, no. 26, 2017, Art. no. .

Choa, S. H.

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Chrostowski, J.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

Clarkson, W. A.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.

Cocq, G. le

L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.

Codemard, C.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 219–241, 2014.

Cook, J.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

Digonnet, M.

Digonnet, M. J. F.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

Dong, L.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Dragic, P.

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

Dragic, P. D.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non. Cryst. Solids, vol. 355, no. 7, pp. 403–413, 2009.

M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Eggleton, B. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Engholm, M.

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photon., vol. 1, no. 12, pp. 693–699, 2007.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Esmaeelpour, M.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

Fan, Y.

Y. Fan, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express, vol. 19, no. 16, 2011, Art. no. .

Foy, P.

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

Fried, N. M.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

Godet, A.

A. Godet, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica, vol. 4, no. 10, 2017, Art. no. .

Gonzalez, D. A.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

Gosnell, T. R.

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett., vol. 24, no. 15, 1999, Art. no. .

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Gu, G.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Han, Z.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Hardy, L. A.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

Hawkins, T.

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

Hawkins, T. W.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

Hector, J. R.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

Hemming, A.

A. Hemming, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express, vol. 21, no. 4, 2013, Art. no. .

Hewak, D. W.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

Hwang, W. J.

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Irby, P. B.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

Jeong, Y.

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

Ji, J.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Kavehrad, M.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

Knall, J.

J. Knall, “Laser cooling in a silica optical fiber at atmospheric pressure,” Opt. Lett., vol. 45, no. 5, 2020, Art. no. .

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

Knall, J. M.

J. M. Knall, “Experimental observation of cooling in Yb-doped silica fibers,” Proc. SPIE, vol. 11298, 2020, Paper 112980F. [Online]. Available: https://doi.org/10.1117/12.2548506

J. M. Knall, “Experimental investigations of spectroscopy and anti-Stokes fluorescence cooling in Yb-doped silicate fibers,” Proc. SPIE, vol. 10936, 2019, Paper 10936-15. [Online]. Available: https://doi.org/10.1117/12.2510889

Kong, F.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Kucera, C.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.

Lapointe, M.-A.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Law, P.-C.

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

Lee, D. S.

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Li, L.

L. Li, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express, vol. 13, no. 9, 2005, Art. no. .

Li, M.-J.

M.-J. Li, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express, vol. 15, no. 13, 2007, Art. no. .

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.

Liu, Z.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Maran, J.-N.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Mobini, E.

E. Mobini, “Laser cooling of silica glass,” 2019, arxiv:1910.10609.

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Myslinski, P.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Payne, D. N.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

Piché, M.

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

Poulton, C. G.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Pradhan, P.

P. Pradhan, “The Brillouin gain of vector modes in a few-mode fiber,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

Quiquempois, Y.

L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.

Rakich, P. T.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

Richardson, M.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

Roh, J. H.

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.

Sahu, J.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Samson, B. N.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

Schulzgen, A.

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

Schweizer, T.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

Shah, L.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

Sheik-Bahae, M.

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photon., vol. 1, no. 12, pp. 693–699, 2007.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

Shen, H.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Shi, W.

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

Shin, K. S.

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Shori, R. K.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Sincore, A.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

Steel, M. J.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Tam, H.

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Tuggle, M.

M. Tuggle, “Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber,” Opt. Mater. X, vol. 1, no. March, 2019, Art. no. .

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Light. Technol., vol. 28, no. 4, pp. 360–364, 2010.

Yan, M.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Yan, P.

P. Yan, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng., vol. 45, no. 12, 2006, Art. no. .

Yao, T.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

Yin, L.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Yu, N.

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

Zervas, M. N.

M. N. Zervas, “High power ytterbium-doped fiber lasers - Fundamentals and applications,” Int. J. Mod. Phys. B, vol. 28, no. 12, pp. 1–35, 2014.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 219–241, 2014.

Zhu, R.

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Zhu, X.

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

Appl. Opt. (1)

L. Yin, M. Yan, Z. Han, H. Shen, and R. Zhu, “Theoretical and experimental studies on direct-liquid-cooling fiber-coiling mode control technology in high-power fiber lasers,” Appl. Opt., vol. 58, no. 6, 2019, Art. no. .

Appl. Phys. Rev. (1)

P. D. Dragic, M. Cavillon, and J. Ballato, “Materials for optical fiber lasers: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.

Electron. Lett. (1)

Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, “In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis,” Electron. Lett., vol. 45, no. 3, p. 153, 2009.

Fiber Lasers VI Technol. Syst. Appl. (1)

M.-A. Lapointe, S. Chatigny, M. Piché, M. Cain-Skaff, and J.-N. Maran, “Thermal effects in high-power CW fiber lasers,” Fiber Lasers VI Technol. Syst. Appl., vol. 7195, no. 2009, Art. no. .

IEEE J. Quantum Electron. (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron., vol. 35, no. 1, pp. 115–122, 1999.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron., vol. 30, no. 8, pp. 1817–1830, 1994.

IEEE J. Sel. Top. Quantum Electron. (3)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 5, pp. 219–241, 2014.

A. Sincore, J. Bradford, J. Cook, L. Shah, and M. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 3, 2018.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron., vol. 13, no. 3, pp. 567–572, 2007.

IEEE Photon. J. (1)

N. Yu, T. W. Hawkins, T. Bui, M. Cavillon, J. Ballato, and P. D. Dragic, “AlPO4 in silica glass optical fibers: Deduction of additional material properties,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019.

Infrared Phys. Technol. (1)

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol., vol. 40, no. 4, pp. 329–335, 1999.

Int. J. Appl. Glas. Sci. (1)

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients,” Int. J. Appl. Glas. Sci., vol. 9, no. 3, pp. 307–318, 2018.

Int. J. Mod. Phys. B (1)

M. N. Zervas, “High power ytterbium-doped fiber lasers - Fundamentals and applications,” Int. J. Mod. Phys. B, vol. 28, no. 12, pp. 1–35, 2014.

J. Light. Technol. (2)

L. Bigot, G. le Cocq, and Y. Quiquempois, “Few-mode erbium-doped fiber amplifiers: A review,” J. Light. Technol., vol. 33, no. 3, pp. 588–596, 2015.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Light. Technol., vol. 28, no. 4, pp. 360–364, 2010.

J. Non. Cryst. Solids (1)

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non. Cryst. Solids, vol. 355, no. 7, pp. 403–413, 2009.

J. Opt. Soc. Amer. B (2)

W. Shi, A. Schulzgen, R. Amezcua, X. Zhu, and S. U. Alam, “Fiber lasers and their applications: Introduction,” J. Opt. Soc. Amer. B, vol. 34, no. 3, p. FLA1, 2017.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: Current status and future perspectives [Invited],” J. Opt. Soc. Amer. B, vol. 27, no. 11, p. B63, 2010.

Nat. Photon. (3)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photon., vol. 1, no. 12, pp. 693–699, 2007.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon., vol. 7, no. 11, pp. 861–867, 2013.

B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, and G. Bahl, “Brillouin integrated photonics,” Nat. Photon., vol. 13, no. 10, pp. 664–677, 2019.

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature, vol. 377, no. 6549, pp. 500–503, 1995.

Opt. Commun. (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun., vol. 136, no. 5–6, pp. 375–378, 1997.

Opt. Eng (1)

P. Yan, “Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer,” Opt. Eng., vol. 45, no. 12, 2006, Art. no. .

Opt. Express (7)

M.-J. Li, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express, vol. 15, no. 13, 2007, Art. no. .

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express, vol. 18, no. 10, 2010, Art. no. .

Y. Fan, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express, vol. 19, no. 16, 2011, Art. no. .

L. Li, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express, vol. 13, no. 9, 2005, Art. no. .

A. Hemming, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express, vol. 21, no. 4, 2013, Art. no. .

F. Chen, “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters,” Opt. Express, vol. 25, no. 26, 2017, Art. no. .

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express, vol. 23, no. 14, 2015, Art. no. .

Opt. Lett. (6)

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett., vol. 43, no. 13, 2018, Art. no. .

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett., vol. 24, no. 15, 1999, Art. no. .

J. Knall, “Laser cooling in a silica optical fiber at atmospheric pressure,” Opt. Lett., vol. 45, no. 5, 2020, Art. no. .

J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, “experimental comparison of silica fibers for laser cooling,” Opt. Lett., vol. 45, no. 14, pp. 4020–4023, 2020.

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett., vol. 43, no. 14, 2018, Art. no. .

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 18-, 29-, and 43-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett., vol. 21, no. 19, 1996, Art. no. .

Opt. Mater. Express (1)

Opt. Mater. X (1)

M. Tuggle, “Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber,” Opt. Mater. X, vol. 1, no. March, 2019, Art. no. .

Optica (1)

A. Godet, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica, vol. 4, no. 10, 2017, Art. no. .

Phys. Rev. Lett. (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett., vol. 85, no. 17, pp. 3600–3603, 2000.

Proc. SPIE (1)

J. M. Knall, “Experimental observation of cooling in Yb-doped silica fibers,” Proc. SPIE, vol. 11298, 2020, Paper 112980F. [Online]. Available: https://doi.org/10.1117/12.2548506

Sci. Rep. (1)

P. Pradhan, “The Brillouin gain of vector modes in a few-mode fiber,” Sci. Rep., vol. 7, no. 1, pp. 1–7, 2017.

Sensors (1)

W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee, and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580–2591, 2011.

Other (8)

J. M. Knall, “Experimental investigations of spectroscopy and anti-Stokes fluorescence cooling in Yb-doped silicate fibers,” Proc. SPIE, vol. 10936, 2019, Paper 10936-15. [Online]. Available: https://doi.org/10.1117/12.2510889

E. Mobini, “Laser cooling of silica glass,” 2019, arxiv:1910.10609.

N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, “Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber,” in Proc. Conf. Lasers Elect.-Opt., 2018, pp. 5–6, vol. Part F94-C.

J. Nilsson, T. Yao, Y. M. Chang, J. Sahu, J. Ji, and C. Codemard, “Tandem-pumped fiber lasers with low quantum defect,” in Proc. Adv. Solid-State Lasers Congress, 2013, Paper ATu1A.1.

L. A. Hardy, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, thulium fiber laser,” no. May, p. 24, 2018.

“Thorlabs,” [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336

C. C. Baker, “Design solutions for increased thresholds of non-linear processes in silica fiber,” in Proc. Laser Cong. 2019 (ASSL, LAC, LS&C), OSA Tech. Digest (Opt. Soci. of Amer., 2019), 2019, Paper JW2A.9. [Online]. Available: https://doi.org/10.1364/ASSL.2019.JW2A.9

M. Cavillon, P. D. Dragic, N. Yu, and J. Ballato, “A materials approach toward the mitigation of nonlinearities in glass optical fibers,” in Proc. 21st Int. Conf. Transparent Opt. Netw., 2019, p. We.D6.2.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved