Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 9,
  • pp. 1916-1923
  • (2019)

Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber

Open Access Open Access

Abstract

We demonstrate that commercially available poly(D,L-lactic acid) (PDLLA) is a suitable material for the fabrication of biodegradable optical fibers with a standard heat drawing process. To do so we report on the chemical and optical characterization of the material. We address the influence of the polymer processing on the molecular weight and thermal properties of the polymer following the preparation of the polymer preforms and the fiber optic drawing process. We show that cutback measurements of the first optical fibers drawn from PDLLA return an attenuation coefficient as low as 0.11 dB/cm at 772 nm, which is the lowest loss reported this far for optical fibers drawn from bio-resorbable material. We also report on the dispersion characteristics of PDLLA, and we find that the thermo-optic coefficient is in the range of −10−4°C−1. Finally, we studied the degradation of PDLLA fibers in vitro, revealing that fibers with the largest diameter of 600 μm degrade faster than those with smaller diameters of 300 and 200 μm and feature more than 84% molecular weight loss over a period of 3 months. The evolution of the optical loss of the fibers as a function of time during immersion in phosphate-buffered saline indicates that these devices are potential candidates for use in photodynamic therapy-like application scenarios.

© 2019 OAPA

PDF Article

References

  • View by:

  1. D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008.
  2. Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.
  3. A. Dupuiset al., “Biodegradable, double-core, porous optical fiber for sensing applications,” in Proc. Opt. Fiber Sensors, OSA Tech. Digest, 2006, Art. no. .
  4. A. Dupuiset al., “Prospective for biodegradable microstructured optical fibers,” Opt. Lett., vol. 32, no. 2, pp. 109–111, 2007.
  5. M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Express, vol. 6, no. 11, pp. 4221–4227, 2015.
  6. M. C. Derosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coordination Chem. Rev., vol. 234, pp. 351–371, 2002.
  7. S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.
  8. A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.
  9. S. T. Parkeret al., “Biocompatible silk printed optical waveguides,” Adv. Mater., vol. 21, no. 23, pp. 2411–2415, 2009.
  10. E. Ceci-Ginistrelliet al., “Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber,” Opt. Mater. Express, vol. 6, no. 6, pp. 2040–2051, 2016.
  11. M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.
  12. M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.
  13. S. Nizamogluet al., “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nature Commun., vol. 7, no. 10374, pp. 1–7, 2016.
  14. D. Shanet al., “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials, vol. 143, pp. 142–148, 2017.
  15. R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.
  16. M. C. Hofmannet al., “Scanning-fiber-based imaging method for tissue engineering,” J. Biomed. Opt., vol. 17, no. 6, 2012, Art. no. .
  17. Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.
  18. B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.
  19. F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.
  20. R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.
  21. Corbion, “Polymers for medical devices,” 2018. [Online]. Available: https://www.corbion.com/static/downloads/datasheets/30d/PURASORB%20PDL%2020.pdf. Accessed on: , 2018.
  22. U.S. Food and Drug Administration, “Drug Master Files (DMFs).” [Online]. Available: https://www.fda.gov/downloads/drugs/developmentapprovalprocess/formssubmissionrequirements/drugmasterfilesdmfs/ucm370723.txt. Accessed on: , 2018.
  23. X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.
  24. A. Rousseau and B. Boutevin, “Synthesis of low absportion halogenated polymers for POF,” in Proc. Plastic Opt. Fibres Appl. Conf., Paris, France, 1992, pp. 33–37.
  25. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.
  26. M. G. Kuzyk, “Characterization techniques and properties,” in Polymer Fiber Optics: Materials, Physics, and Applications. Boca Raton, FL, USA: CRC, 2007, pp. 153–168.
  27. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.
  28. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.
  29. E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.
  30. M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.
  31. Thorlabs, Inc., “GIPOF120 – Graded-Index Perfluorinated POF, 120 μm core.” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=GIPOF120. Accessed on: , 2019.
  32. I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.
  33. K. Shiet al., “Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo,” Sci. Rep., vol. 6,  2016, Art. no. .
  34. I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.
  35. W. Heidemannet al., “Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo,” Biomaterials, vol. 22, no. 17, pp. 2371–2381, 2001.
  36. Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by lipases,” Nature, vol. 270, pp. 76–78, 1977.
  37. M. A. Tracyet al., “Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro,” Biomaterials, vol. 20, no. 11, pp. 1057–1062, 1999.
  38. L. Ferreiraet al., “Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels,” J. Biomed. Mater. Res. A, vol. 68, pp. 584–596, 2004.
  39. A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.
  40. Optical Fibres – Part 1-40: Measurement Methods and Test Procedures – Attenuation, IEC Standard , 2001.
  41. Y. Koike, “POF—From the past to the future,” in Proc. 7th Int. Plastic Opt. Fibres Conf., Berlin, Germany, 1998, p. 1–8.
  42. B. L. Weniget al., “Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck,” Arch. Otolaryngology—Head Neck Surg., vol. 116, no. 11, pp. 1267–1270, 1990.
  43. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol., vol. 58, no. 9, pp. R61–R109, 2008.
  44. Industrial Fiber Optics, Inc., “Connector, SMA 905 POF 1 mm plastic optical fiber.” [Online]. Available: http://i-fiberoptics.com/connector-detail.php?id=15&cat=pof. Accessed on: , 2018.
  45. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.
  46. W. M. Star, “Light delivery and light dosimetry for photodynamic therapy,” Lasers Med. Sci., vol. 5, no. 2, pp. 107–113, 1990.
  47. Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

2017 (3)

D. Shanet al., “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials, vol. 143, pp. 142–148, 2017.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

2016 (3)

E. Ceci-Ginistrelliet al., “Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber,” Opt. Mater. Express, vol. 6, no. 6, pp. 2040–2051, 2016.

S. Nizamogluet al., “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nature Commun., vol. 7, no. 10374, pp. 1–7, 2016.

K. Shiet al., “Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo,” Sci. Rep., vol. 6,  2016, Art. no. .

2015 (5)

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

M. B. Applegate, G. Perotto, D. L. Kaplan, and F. G. Omenetto, “Biocompatible silk step-index optical waveguides,” Biomed. Opt. Express, vol. 6, no. 11, pp. 4221–4227, 2015.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

2014 (2)

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

2013 (1)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

2012 (2)

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

M. C. Hofmannet al., “Scanning-fiber-based imaging method for tissue engineering,” J. Biomed. Opt., vol. 17, no. 6, 2012, Art. no. .

2009 (2)

S. T. Parkeret al., “Biocompatible silk printed optical waveguides,” Adv. Mater., vol. 21, no. 23, pp. 2411–2415, 2009.

B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.

2008 (3)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol., vol. 58, no. 9, pp. R61–R109, 2008.

D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008.

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

2007 (1)

2006 (3)

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

2004 (1)

L. Ferreiraet al., “Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels,” J. Biomed. Mater. Res. A, vol. 68, pp. 584–596, 2004.

2002 (2)

E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.

M. C. Derosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coordination Chem. Rev., vol. 234, pp. 351–371, 2002.

2001 (1)

W. Heidemannet al., “Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo,” Biomaterials, vol. 22, no. 17, pp. 2371–2381, 2001.

1999 (1)

M. A. Tracyet al., “Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro,” Biomaterials, vol. 20, no. 11, pp. 1057–1062, 1999.

1997 (1)

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

1995 (1)

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

1993 (1)

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.

1990 (2)

B. L. Weniget al., “Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck,” Arch. Otolaryngology—Head Neck Surg., vol. 116, no. 11, pp. 1267–1270, 1990.

W. M. Star, “Light delivery and light dosimetry for photodynamic therapy,” Lasers Med. Sci., vol. 5, no. 2, pp. 107–113, 1990.

1977 (1)

Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by lipases,” Nature, vol. 270, pp. 76–78, 1977.

Aldabaldetreku, G.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Applegate, M. B.

Bae, B. S.

E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.

Barton, G. W.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.

Beckers, M.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

Bhardwaj, U.

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

Bikandi, I.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Bishop, A. E.

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

Boccaccini, A. R.

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

Boutevin, B.

A. Rousseau and B. Boutevin, “Synthesis of low absportion halogenated polymers for POF,” in Proc. Plastic Opt. Fibres Appl. Conf., Paris, France, 1992, pp. 33–37.

Bunge, C.-A.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

Burgess, D. J.

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

Cao, G.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Ceci-Ginistrelli, E.

Chen, L.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Chen, S.

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

Chen, W.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Choi, J. W.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Choi, M.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Crutchley, R. J.

M. C. Derosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coordination Chem. Rev., vol. 234, pp. 351–371, 2002.

Daum, W.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.

Davis, M. E.

B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.

Derosa, M. C.

M. C. Derosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coordination Chem. Rev., vol. 234, pp. 351–371, 2002.

Ding, H.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Domb, A. J.

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

Doppalapudi, S.

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

Dupuis, A.

A. Dupuiset al., “Prospective for biodegradable microstructured optical fibers,” Opt. Lett., vol. 32, no. 2, pp. 109–111, 2007.

A. Dupuiset al., “Biodegradable, double-core, porous optical fiber for sensing applications,” in Proc. Opt. Fiber Sensors, OSA Tech. Digest, 2006, Art. no. .

Durana, G.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Feinstein, R.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Ferreira, L.

L. Ferreiraet al., “Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels,” J. Biomed. Mater. Res. A, vol. 68, pp. 584–596, 2004.

Filho, R. M.

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Fu, R.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Garreau, H.

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

Geissmann, A.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Gries, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

Grizzi, I.

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

Hahn, S. K.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Heidemann, W.

W. Heidemannet al., “Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo,” Biomaterials, vol. 22, no. 17, pp. 2371–2381, 2001.

Hoffmann, R.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Hofmann, M. C.

M. C. Hofmannet al., “Scanning-fiber-based imaging method for tissue engineering,” J. Biomed. Opt., vol. 17, no. 6, 2012, Art. no. .

Humar, M.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

Illarramendi, M. A.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Jain, A.

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

Jardini, A. L.

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Jurich, M.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.

Kang, E. S.

E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.

Kaplan, D. L.

Khan, W.

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

Kim, S.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Koike, Y.

Y. Koike, “POF—From the past to the future,” in Proc. 7th Int. Plastic Opt. Fibres Conf., Berlin, Germany, 1998, p. 1–8.

Krauser, J.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.

Kuzyk, M. G.

M. G. Kuzyk, “Characterization techniques and properties,” in Polymer Fiber Optics: Materials, Physics, and Applications. Boca Raton, FL, USA: CRC, 2007, pp. 153–168.

Large, M. C. J.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.

Lasprilla, A. J. R.

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Lee, T. H.

E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.

Li, R.-Y.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Li, S.

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

Li, W.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Li, Y.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Lin, F.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

Lin, Y.

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

Lin, Y. M.

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

Liu, H.-Q.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Liu, J.-F.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Liu, W.

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

Liu, X.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Liu, Z.-G.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Lunelli, B. H.

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Luo, W.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Mack, B. C.

B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.

Maquet, V.

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

Martinez, G. A. R.

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Nazempour, R.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Nizamoglu, S.

S. Nizamogluet al., “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nature Commun., vol. 7, no. 10374, pp. 1–7, 2016.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Omenetto, F. G.

Onuki, Y.

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

Pan, Y.-H.

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Papadimitrakopoulos, F.

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

Parker, S. T.

S. T. Parkeret al., “Biocompatible silk printed optical waveguides,” Adv. Mater., vol. 21, no. 23, pp. 2411–2415, 2009.

Patterson, M. S.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol., vol. 58, no. 9, pp. R61–R109, 2008.

Perotto, G.

Poladian, L.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.

Polak, J. M.

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

Rousseau, A.

A. Rousseau and B. Boutevin, “Synthesis of low absportion halogenated polymers for POF,” in Proc. Plastic Opt. Fibres Appl. Conf., Paris, France, 1992, pp. 33–37.

Rüfenacht, H.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Schlüter, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

Shan, D.

D. Shanet al., “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials, vol. 143, pp. 142–148, 2017.

Shi, K.

K. Shiet al., “Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo,” Sci. Rep., vol. 6,  2016, Art. no. .

Skumanich, A.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.

Stähelin, A. C.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Star, W. M.

W. M. Star, “Light delivery and light dosimetry for photodynamic therapy,” Lasers Med. Sci., vol. 5, no. 2, pp. 107–113, 1990.

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

Suzuki, T.

Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by lipases,” Nature, vol. 270, pp. 76–78, 1977.

Swalen, J. D.

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.

Tan, D.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Tokiwa, Y.

Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by lipases,” Nature, vol. 270, pp. 76–78, 1977.

Tracy, M. A.

M. A. Tracyet al., “Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro,” Biomaterials, vol. 20, no. 11, pp. 1057–1062, 1999.

Vad, T.

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

van Eijkelenborg, M. A.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.

Vert, M.

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

Wang, M.

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

Wang, X.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Wang, Y.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Weiler, A.

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Wenig, B. L.

B. L. Weniget al., “Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck,” Arch. Otolaryngology—Head Neck Surg., vol. 116, no. 11, pp. 1267–1270, 1990.

Williams, D. F.

D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008.

Wilson, B. C.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol., vol. 58, no. 9, pp. R61–R109, 2008.

Wright, K. W.

B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.

Yang, Y.

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Yun, S. H.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Zamzow, P. E.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.

Zhang, K.

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

Ziemann, O.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.

Zou, Y.

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Zubia, J.

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Adv. Mater. (2)

S. T. Parkeret al., “Biocompatible silk printed optical waveguides,” Adv. Mater., vol. 21, no. 23, pp. 2411–2415, 2009.

M. Choi, M. Humar, S. Kim, and S. H. Yun, “Step-index optical fiber made of biocompatible hydrogels,” Adv. Mater., vol. 27, pp. 4081–4086, 2015.

Adv. Opt. Mater. (1)

R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, and K. Zhang, “Implantable and biodegradable poly (l -lactic acid) fibers for optical neural interfaces,” Adv. Opt. Mater., vol. 6, no. 3, pp. 1–8, 2017.

Amer. J. Transl. Res. (1)

R.-Y. Li, Z.-G. Liu, H.-Q. Liu, L. Chen, J.-F. Liu, and Y.-H. Pan, “Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films,” Amer. J. Transl. Res., vol. 7, no. 8, pp. 1357–1370, 2015.

Appl. Phys. Lett. (2)

A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett., vol. 62, no. 5, pp. 446–448, 1993.

E. S. Kang, T. H. Lee, and B. S. Bae, “Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films,” Appl. Phys. Lett., vol. 81, no. 8, pp. 1438–1440, 2002.

Arch. Otolaryngology—Head Neck Surg. (1)

B. L. Weniget al., “Photodynamic therapy in the treatment of squamous cell carcinoma of the head and neck,” Arch. Otolaryngology—Head Neck Surg., vol. 116, no. 11, pp. 1267–1270, 1990.

Arthroscopy (1)

A. C. Stähelin, A. Weiler, H. Rüfenacht, R. Hoffmann, A. Geissmann, and R. Feinstein, “Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases,” Arthroscopy, vol. 13, no. 2, pp. 238–244, 1997.

Biomaterials (5)

I. Grizzi, H. Garreau, S. Li, and M. Vert, “Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence,” Biomaterials, vol. 16, no. 4, pp. 305–311, 1995.

W. Heidemannet al., “Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo,” Biomaterials, vol. 22, no. 17, pp. 2371–2381, 2001.

M. A. Tracyet al., “Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro,” Biomaterials, vol. 20, no. 11, pp. 1057–1062, 1999.

D. Shanet al., “Flexible biodegradable citrate-based polymeric step-index optical fiber,” Biomaterials, vol. 143, pp. 142–148, 2017.

D. F. Williams, “On the mechanisms of biocompatibility,” Biomaterials, vol. 29, no. 20, pp. 2941–2953, 2008.

Biomed. Opt. Express (1)

Biotechnol. Adv. (1)

A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnol. Adv., vol. 30, no. 1, pp. 321–328, 2012.

Coordination Chem. Rev. (1)

M. C. Derosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coordination Chem. Rev., vol. 234, pp. 351–371, 2002.

J. Biomater. Appl. (1)

Y. M. Lin, A. R. Boccaccini, J. M. Polak, A. E. Bishop, and V. Maquet, “Biocompatibility of poly-DL-lactic acid (PDLLA) for lung tissue engineering,” J. Biomater. Appl., vol. 21, no. 2, pp. 109–18, 2006.

J. Biomed. Mater. Res. A (1)

L. Ferreiraet al., “Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels,” J. Biomed. Mater. Res. A, vol. 68, pp. 584–596, 2004.

J. Biomed. Opt. (1)

M. C. Hofmannet al., “Scanning-fiber-based imaging method for tissue engineering,” J. Biomed. Opt., vol. 17, no. 6, 2012, Art. no. .

J. Controlled Release (1)

B. C. Mack, K. W. Wright, and M. E. Davis, “A biodegradable filament for controlled drug delivery,” J. Controlled Release, vol. 139, no. 3, pp. 205–211, 2009.

J. Diabetes Sci. Technol. (1)

Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, and D. J. Burgess, “A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response,” J. Diabetes Sci. Technol., vol. 2, no. 6, pp. 1003–1015, 2008.

J. Light. Technol. (1)

I. Bikandi, M. A. Illarramendi, G. Durana, G. Aldabaldetreku, and J. Zubia, “Spectral dependence of scattered light in step-index polymer optical fibers by side-illumination technique,” J. Light. Technol., vol. 32, no. 23, pp. 4539–4543, Dec. 2014.

Lasers Med. Sci. (1)

W. M. Star, “Light delivery and light dosimetry for photodynamic therapy,” Lasers Med. Sci., vol. 5, no. 2, pp. 107–113, 1990.

Nature (1)

Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by lipases,” Nature, vol. 270, pp. 76–78, 1977.

Nature Commun. (1)

S. Nizamogluet al., “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nature Commun., vol. 7, no. 10374, pp. 1–7, 2016.

Nature Photon. (1)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nature Photon., vol. 7, no. 12, pp. 987–994, 2013.

Opt. Eng. (1)

Y. Lin, S. Chen, M. Wang, and W. Liu, “Fiber-optic fast response pH sensor in fiber Bragg gating using intelligent hydrogel coatings,” Opt. Eng., vol. 54, no. 5, p. 57107, 2015.

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Med. Biol. (1)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol., vol. 58, no. 9, pp. R61–R109, 2008.

Polym. Adv. Technol. (1)

S. Doppalapudi, A. Jain, W. Khan, and A. J. Domb, “Biodegradable polymers – An overview,” Polym. Adv. Technol., vol. 25, pp. 427–435, 2014.

Polym. Degrad. Stab. (1)

X. Liu, Y. Zou, W. Li, G. Cao, and W. Chen, “Kinetics of thermo-oxidative and thermal degradation of poly(d,l-lactide) (PDLLA) at processing temperature,” Polym. Degrad. Stab., vol. 91, no. 12, pp. 3259–3265, 2006.

Polym. Int. (1)

M. Beckers, T. Schlüter, T. Vad, T. Gries, and C.-A. Bunge, “An overview on fabrication methods for polymer optical fibers,” Polym. Int., vol. 64, no. 1, pp. 25–36, 2015.

Polymer (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer, vol. 47, no. 14, pp. 4893–4896, 2006.

RSC Adv. (1)

F. Lin, X. Wang, Y. Wang, Y. Yang, and Y. Li, “Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration,” RSC Adv., vol. 7, no. 66, pp. 41593–41602, 2017.

Sci. Rep. (1)

K. Shiet al., “Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo,” Sci. Rep., vol. 6,  2016, Art. no. .

Other (11)

Thorlabs, Inc., “GIPOF120 – Graded-Index Perfluorinated POF, 120 μm core.” [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=GIPOF120. Accessed on: , 2019.

Corbion, “Polymers for medical devices,” 2018. [Online]. Available: https://www.corbion.com/static/downloads/datasheets/30d/PURASORB%20PDL%2020.pdf. Accessed on: , 2018.

U.S. Food and Drug Administration, “Drug Master Files (DMFs).” [Online]. Available: https://www.fda.gov/downloads/drugs/developmentapprovalprocess/formssubmissionrequirements/drugmasterfilesdmfs/ucm370723.txt. Accessed on: , 2018.

A. Rousseau and B. Boutevin, “Synthesis of low absportion halogenated polymers for POF,” in Proc. Plastic Opt. Fibres Appl. Conf., Paris, France, 1992, pp. 33–37.

M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, “Fabrication of mPOFs,” in Microstructured Polymer Optical Fibres. Berlin, Germany: Springer, 2007, pp. 103–104.

M. G. Kuzyk, “Characterization techniques and properties,” in Polymer Fiber Optics: Materials, Physics, and Applications. Boca Raton, FL, USA: CRC, 2007, pp. 153–168.

A. Dupuiset al., “Biodegradable, double-core, porous optical fiber for sensing applications,” in Proc. Opt. Fiber Sensors, OSA Tech. Digest, 2006, Art. no. .

Industrial Fiber Optics, Inc., “Connector, SMA 905 POF 1 mm plastic optical fiber.” [Online]. Available: http://i-fiberoptics.com/connector-detail.php?id=15&cat=pof. Accessed on: , 2018.

O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, “Simulation of optical waveguides,” in POF Handbook Optical Short Range Transmission Systems. Berlin, Germany: Springer, 2008, pp. 763–801.

Optical Fibres – Part 1-40: Measurement Methods and Test Procedures – Attenuation, IEC Standard , 2001.

Y. Koike, “POF—From the past to the future,” in Proc. 7th Int. Plastic Opt. Fibres Conf., Berlin, Germany, 1998, p. 1–8.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved