Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 16,
  • pp. 5221-5231
  • (2021)

Low Power DSP-Based Transceivers for Data Center Optical Fiber Communications (Invited Tutorial)

Open Access Open Access

Abstract

In this tutorial, we discuss the evolution of the technology deployed for optical interconnects and the trade-offs in the design of low complexity, low power DSP and implementation for direct detect and coherent, pluggable optical modules for data center applications. The design trade-offs include the choice of modulation format, baud rate, optical link design, forward error correction, signal shaping and dispersion compensation.

PDF Article

References

  • View by:

  1. D. Crivelli, H. Carrer, and M. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion PMD and phase noise in coherent fiber optic systems,” in Proc. Global Telecom. Conf. (GLOBECOM), 2004, vol. 4, pp. 2545–2551.
  2. O. Agazzi, “A 90 nm CMOS DSP MLSD transceiver with integrated AFE for electronic dispersion compensation of multi-mode optical fibers at 10Gb/s,” J. Solid-State Circuits, vol. 43, no. 12, pp. 2939–2957, 2008.
  3. K. Roberts and I. Roberts, “DSP: A disruptive technology for optical transceivers,” in Proc. 35th Eur. Conf. Opt. Commun.,Vienna, Austria, 2009, pp. 1–4.
  4. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
  5. K. Gopalakrishnan, “A 40/50/100Gb/s PAM-4 ethernet transceiver in 28nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, USA, 2016, pp. 62–63.
  6. S. Bhoja, “PAM4 signaling for intra-data center and data center to data center connectivity (DCI),” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, pp. 1–54.
  7. R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.
  8. R. Nagarajan, “Pluggable coherent transport modules for datacenter interconnects,” in Proc. IEEE Summer Top. Mtg. (V irtual Conf.), 2020, Art. no. .
  9. R. Nagarajan, “Small form factor modules for coherent optical interconnects,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Art. no. .
  10. High-Speed Ethernet Optics, 10th ed., Eugene, OR, USA: LightCounting, 2019, pp. 8.
  11. S. Wilkinson and A. Schmitt, “Transport applications report (2Q20),” Cignal AI, Boston, MA, USA, 2020.
  12. R. Chopra, “Looking beyond 400G – A system vendor perspective,” IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group, 2021, [Online]. Available: https://www.ieee802.org/3/B400G/public/21_02/chopra_b400g_01_210208.pdf
  13. Implementation Agreement 400ZR, Optical Internetworking Forum, Fremont, CA USA, OIF-400ZR-01.0, 2020.
  14. M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.
  15. R. Nagarajan and I. Lyubomirsky, “Next-Gen data center interconnects: The race to 800G,” Consortium for On-Board Optics webcast, 2021, [Online]. Available: https://www.onboardoptics.org/the-race-to-800g-inphi
  16. CFP Multi-Source Agreement (MSA), [Online]. Available: http://www.cfp-msa.org/
  17. F. Frey, R. Elschner, and J. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. Photonic Netw.; 18. ITG-Symp., Leipzig, Germany, 2017, pp. 1–8.
  18. X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.
  19. R. Nagarajan, “Datacenter interconnect systems with coherent detection (Tutorial),” in Proc. Fibre-Opt. Cable, San Diego, USA, 2019, Art. no. .
  20. C. Fludger, “Performance orientated DSP design for flexible coherent transmission (Tutorial),” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2020, Art. no. .
  21. I. Lyubomirsky, “Coherent vs. direct detection for next generation intra-datacenter optical interconnects,” in Proc. IEEE Summer Top. Mtg. (Virtual Conf.), 2020, Art. no. .
  22. B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.
  23. O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.
  24. D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.
  25. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers using multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, 2017.
  26. T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .
  27. P. Winzer, S. Chandrasekhar, and X. Liu, “Modulation formats and receiver concepts for optical transmission systems,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2012, Art. no. SC105.
  28. I. Lyubomirsky, “OSNR link budget methodology,” in Proc. IEEE 802.3cn Ad-Hoc Meet., 2018. [Online]. Available: https://www.ieee802.org/3/cn/public/adhoc/18_1025/lyubomirsky_3cn_01_181025.pdf
  29. B. Zhang and K. Kota, “800ZR reference links,” Opt. Internetworking Forum, 2020, OIF2020.472.01.
  30. K. Onohara and T. Mizuochi, “Forward error correction: A powerful and indispensable technology for ultra high-speed transmission,” in Proc. SubOptic Conf., Yokohama, Japan, 2010, Tutorial 5.
  31. K. Onohara, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1258–1267, 2010.
  32. B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.
  33. D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper OW1H.4, pp. 1–3.
  34. L. Nelson, “WDM performance and multiple-path interference tolerance of a real-time 120 Gbps Pol-Mux QPSK transceiver with soft decision FEC,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.
  35. D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.
  36. Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.
  37. I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.
  38. K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.
  39. S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.
  40. L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.
  41. K. Sugihara, “A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, 2013, Paper OM2B.4, pp. 1–3.
  42. J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.
  43. F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.
  44. I. Djordjevic, “Advanced coded modulation for ultrahigh speed optical transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper W3J.4, pp. 1–41.
  45. Digital Video Broadcasting, ETSI EN Standard 302 307, Rev. 1.2.1, 2009.
  46. F. Kschischang, “Introduction to forward error correction,” in Proc. Opt. Fiber Commun., San Francisco, USA, 2017, p. SC390.
  47. H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf
  48. S. Bhoja, V. Parthasarathy, and Z. Wang, “FEC codes for 400 Gbps 802.3bs,” IEEE P802.3bs 200 GbE & 400 GbE Task Force, 2014. [Online]. Available: https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf
  49. R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Opt. Fiber Telecommun., vol. VIA I. Kaminow, T. Li and A. Willner, ed.s., New York, NY, USA: Elsevier, 2013, pp. 25–98.
  50. R. Nagarajan and M. Filer, “10. Silicon photonics based PAM4, DWDM datacenter interconnects,” in Datacenter Connectivity Technologies: Principles and Practice, vol. 1, F. Chang, ed., Denmark: River Publishers, 2018, pp. 405–430.
  51. A. Castrillón, “First real-time demonstration of probabilistic shaping 400G transmission enabling high-performance pluggable module applications,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Paper MG1.3, pp. 1–2.
  52. S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.
  53. J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.
  54. J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communication,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, 2019.

2020 (4)

S. Wilkinson and A. Schmitt, “Transport applications report (2Q20),” Cignal AI, Boston, MA, USA, 2020.

X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.

B. Zhang and K. Kota, “800ZR reference links,” Opt. Internetworking Forum, 2020, OIF2020.472.01.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

2019 (2)

J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communication,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, 2019.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

2018 (2)

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

2017 (2)

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers using multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, 2017.

2016 (2)

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

2014 (1)

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

2012 (1)

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

2011 (1)

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

2010 (2)

I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.

K. Onohara, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1258–1267, 2010.

2009 (2)

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

Digital Video Broadcasting, ETSI EN Standard 302 307, Rev. 1.2.1, 2009.

2008 (1)

O. Agazzi, “A 90 nm CMOS DSP MLSD transceiver with integrated AFE for electronic dispersion compensation of multi-mode optical fibers at 10Gb/s,” J. Solid-State Circuits, vol. 43, no. 12, pp. 2939–2957, 2008.

2005 (1)

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

Abdel-Ghaffar, K.

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.

Agazzi, O.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

O. Agazzi, “A 90 nm CMOS DSP MLSD transceiver with integrated AFE for electronic dispersion compensation of multi-mode optical fibers at 10Gb/s,” J. Solid-State Circuits, vol. 43, no. 12, pp. 2939–2957, 2008.

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Aguirre, A.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Bakhtiari, Z.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

Bhoja, S.

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

S. Bhoja, “PAM4 signaling for intra-data center and data center to data center connectivity (DCI),” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, pp. 1–54.

S. Bhoja, V. Parthasarathy, and Z. Wang, “FEC codes for 400 Gbps 802.3bs,” IEEE P802.3bs 200 GbE & 400 GbE Task Force, 2014. [Online]. Available: https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf

Billor, D.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

Bisplinghof, A.

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

Boudreau, S.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

Brochu, G.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

Buchali, F.

F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.

Carrer, H.

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

D. Crivelli, H. Carrer, and M. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion PMD and phase noise in coherent fiber optic systems,” in Proc. Global Telecom. Conf. (GLOBECOM), 2004, vol. 4, pp. 2545–2551.

Castrillon, M.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Castrillón, A.

A. Castrillón, “First real-time demonstration of probabilistic shaping 400G transmission enabling high-performance pluggable module applications,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Paper MG1.3, pp. 1–2.

Castrillón, M.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

Chandrasekhar, S.

P. Winzer, S. Chandrasekhar, and X. Liu, “Modulation formats and receiver concepts for optical transmission systems,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2012, Art. no. SC105.

Chang, D.

D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper OW1H.4, pp. 1–3.

Cho, J.

J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communication,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, 2019.

Chopra, R.

R. Chopra, “Looking beyond 400G – A system vendor perspective,” IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group, 2021, [Online]. Available: https://www.ieee802.org/3/B400G/public/21_02/chopra_b400g_01_210208.pdf

Cox, J.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

Crivelli, D.

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

D. Crivelli, H. Carrer, and M. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion PMD and phase noise in coherent fiber optic systems,” in Proc. Global Telecom. Conf. (GLOBECOM), 2004, vol. 4, pp. 2545–2551.

Ding, Z.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

Djordjevic, I.

I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.

I. Djordjevic, “Advanced coded modulation for ultrahigh speed optical transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper W3J.4, pp. 1–41.

Doerr, C.

R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Opt. Fiber Telecommun., vol. VIA I. Kaminow, T. Li and A. Willner, ed.s., New York, NY, USA: Elsevier, 2013, pp. 25–98.

Dong, H.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

Downie, J.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

Drenski, T.

F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.

Duthel, T.

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

Elschner, R.

F. Frey, R. Elschner, and J. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. Photonic Netw.; 18. ITG-Symp., Leipzig, Germany, 2017, pp. 1–8.

Farhood, A.

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

Faruk, S.

S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers using multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, 2017.

Filer, M.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

R. Nagarajan and M. Filer, “10. Silicon photonics based PAM4, DWDM datacenter interconnects,” in Datacenter Connectivity Technologies: Principles and Practice, vol. 1, F. Chang, ed., Denmark: River Publishers, 2018, pp. 405–430.

Fischer, J.

F. Frey, R. Elschner, and J. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. Photonic Netw.; 18. ITG-Symp., Leipzig, Germany, 2017, pp. 1–8.

Fludger, C.

C. Fludger, “Performance orientated DSP design for flexible coherent transmission (Tutorial),” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2020, Art. no. .

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

Frey, F.

F. Frey, R. Elschner, and J. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. Photonic Netw.; 18. ITG-Symp., Leipzig, Germany, 2017, pp. 1–8.

Fu, Y.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

Gaudette, J.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

Goette, T.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Gopalakrishnan, K.

K. Gopalakrishnan, “A 40/50/100Gb/s PAM-4 ethernet transceiver in 28nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, USA, 2016, pp. 62–63.

Huang, Q.

K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.

Hueda, M.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

D. Crivelli, H. Carrer, and M. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion PMD and phase noise in coherent fiber optic systems,” in Proc. Global Telecom. Conf. (GLOBECOM), 2004, vol. 4, pp. 2545–2551.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Hunt, A.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

Hurley, J.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

Jiao, B.

H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf

Kato, M.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

Kish, F.

R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Opt. Fiber Telecommun., vol. VIA I. Kaminow, T. Li and A. Willner, ed.s., New York, NY, USA: Elsevier, 2013, pp. 25–98.

Klekamp, A.

F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.

Kota, K.

B. Zhang and K. Kota, “800ZR reference links,” Opt. Internetworking Forum, 2020, OIF2020.472.01.

Kschischang, F.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

F. Kschischang, “Introduction to forward error correction,” in Proc. Opt. Fiber Commun., San Francisco, USA, 2017, p. SC390.

Kubo, K.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Kupfer, T.

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

Langenbach, S.

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

Li, J.

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

Liao, Y.

H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf

Lin, S.

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.

Liu, H.

X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.

Liu, K.

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.

Liu, X.

P. Winzer, S. Chandrasekhar, and X. Liu, “Modulation formats and receiver concepts for optical transmission systems,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2012, Art. no. SC105.

Lodge, J.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

Lyubomirsky, I.

I. Lyubomirsky, “OSNR link budget methodology,” in Proc. IEEE 802.3cn Ad-Hoc Meet., 2018. [Online]. Available: https://www.ieee802.org/3/cn/public/adhoc/18_1025/lyubomirsky_3cn_01_181025.pdf

I. Lyubomirsky, “Coherent vs. direct detection for next generation intra-datacenter optical interconnects,” in Proc. IEEE Summer Top. Mtg. (Virtual Conf.), 2020, Art. no. .

R. Nagarajan and I. Lyubomirsky, “Next-Gen data center interconnects: The race to 800G,” Consortium for On-Board Optics webcast, 2021, [Online]. Available: https://www.onboardoptics.org/the-race-to-800g-inphi

Maj, T.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

Makovejs, S.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

Matsumoto, W.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Miyata, Y.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Mizuochi, T.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

K. Onohara and T. Mizuochi, “Forward error correction: A powerful and indispensable technology for ultra high-speed transmission,” in Proc. SubOptic Conf., Yokohama, Japan, 2010, Tutorial 5.

Morero, D.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Nagarajan, R.

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

R. Nagarajan, “Pluggable coherent transport modules for datacenter interconnects,” in Proc. IEEE Summer Top. Mtg. (V irtual Conf.), 2020, Art. no. .

R. Nagarajan, “Small form factor modules for coherent optical interconnects,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Art. no. .

R. Nagarajan, “Datacenter interconnect systems with coherent detection (Tutorial),” in Proc. Fibre-Opt. Cable, San Diego, USA, 2019, Art. no. .

R. Nagarajan and I. Lyubomirsky, “Next-Gen data center interconnects: The race to 800G,” Consortium for On-Board Optics webcast, 2021, [Online]. Available: https://www.onboardoptics.org/the-race-to-800g-inphi

R. Nagarajan and M. Filer, “10. Silicon photonics based PAM4, DWDM datacenter interconnects,” in Datacenter Connectivity Technologies: Principles and Practice, vol. 1, F. Chang, ed., Denmark: River Publishers, 2018, pp. 405–430.

R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Opt. Fiber Telecommun., vol. VIA I. Kaminow, T. Li and A. Willner, ed.s., New York, NY, USA: Elsevier, 2013, pp. 25–98.

Nelson, L.

L. Nelson, “WDM performance and multiple-path interference tolerance of a real-time 120 Gbps Pol-Mux QPSK transceiver with soft decision FEC,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Onohara, K.

K. Onohara, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1258–1267, 2010.

K. Onohara and T. Mizuochi, “Forward error correction: A powerful and indispensable technology for ultra high-speed transmission,” in Proc. SubOptic Conf., Yokohama, Japan, 2010, Tutorial 5.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Parthasarathy, V.

S. Bhoja, V. Parthasarathy, and Z. Wang, “FEC codes for 400 Gbps 802.3bs,” IEEE P802.3bs 200 GbE & 400 GbE Task Force, 2014. [Online]. Available: https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf

Ramos, F.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Riani, J.

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

Roberts, I.

K. Roberts and I. Roberts, “DSP: A disruptive technology for optical transceivers,” in Proc. 35th Eur. Conf. Opt. Commun.,Vienna, Austria, 2009, pp. 1–4.

Roberts, K.

K. Roberts and I. Roberts, “DSP: A disruptive technology for optical transceivers,” in Proc. 35th Eur. Conf. Opt. Commun.,Vienna, Austria, 2009, pp. 1–4.

Rope, T.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

Savory, S. J.

S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers using multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, 2017.

Schmalen, L.

F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.

Schmitt, A.

S. Wilkinson and A. Schmitt, “Transport applications report (2Q20),” Cignal AI, Boston, MA, USA, 2020.

Searcy, S.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

Smith, B.

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

Song, S.

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

Stewart, J.

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

Sugihara, K.

K. Sugihara, “A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, 2013, Paper OM2B.4, pp. 1–3.

Tibuleac, S.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

Trépanier, F.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

Urata, R.

X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.

Wang, T.

I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.

Wang, Z.

S. Bhoja, V. Parthasarathy, and Z. Wang, “FEC codes for 400 Gbps 802.3bs,” IEEE P802.3bs 200 GbE & 400 GbE Task Force, 2014. [Online]. Available: https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf

Wilkinson, S.

S. Wilkinson and A. Schmitt, “Transport applications report (2Q20),” Cignal AI, Boston, MA, USA, 2020.

Winzer, P.

P. Winzer, S. Chandrasekhar, and X. Liu, “Modulation formats and receiver concepts for optical transmission systems,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2012, Art. no. SC105.

Winzer, P. J.

J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communication,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, 2019.

Xu, L.

I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.

Yin, Y.

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

Yoshida, H.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

Zhang, B.

B. Zhang and K. Kota, “800ZR reference links,” Opt. Internetworking Forum, 2020, OIF2020.472.01.

Zhang, G.

H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf

Zhang, H.

H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf

Zhang, L.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

Zhou, B.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

Zhou, X.

X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.

Electron. Lett. (1)

J. Downie, J. Hurley, R. Nagarajan, T. Maj, H. Dong, and S. Makovejs, “100 Gb/s wavelength division multiplexing four-level pulse amplitude modulated transmission over 160 km using advanced optical fibres,” Electron. Lett., vol. 54, no. 11, pp. 699–701, 2018.

J. Lightw. Technol. (8)

J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communication,” J. Lightw. Technol., vol. 37, no. 6, pp. 1590–1607, 2019.

S. Searcy, G. Brochu, S. Boudreau, F. Trépanier, M. Filer, and S. Tibuleac, “Statistical evaluation of PAM4 data center interconnect system with slope-compensating fiber bragg grating tunable dispersion compensation module,” J. Lightw. Technol., vol. 38, no. 12, pp. 3173–3179, 2020.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

X. Zhou, R. Urata, and H. Liu, “Beyond 1 Tb/s intra-data center interconnect technology: IM-DD or coherent?,” J. Lightw. Technol., vol. 38, no. 2, pp. 475–484, 2020.

O. Agazzi, M. Hueda, D. Crivelli, and H. Carrer, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightw. Technol., vol. 23, no. 2, pp. 749–763, 2005.

D. Morero, M. Castrillón, A. Aguirre, M. Hueda, and O. Agazzi, “Design tradeoffs and challenges in practical coherent optical transceiver implementations,” J. Lightw. Technol., vol. 34, no. 1, pp. 121–136, 2016.

S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers using multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, 2017.

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, 2012.

J. Opt. Comm. Netw. (1)

R. Nagarajan, M. Filer, Y. Fu, M. Kato, T. Rope, and J. Stewart, “Silicon photonics-based 100 Gbit/s, PAM4, DWDM data center interconnects,” J. Opt. Comm. Netw., vol. 10, no. 7, pp. 25–36, 2018.

J. Opt. Comms. Netw. (1)

M. Filer, J. Gaudette, Y. Yin, D. Billor, Z. Bakhtiari, and J. Cox, “Low-margin optical networking at cloud scale,” J. Opt. Comms. Netw., vol. 11, no. 10, pp. C94–C108, 2019.

J. Sel. Topics Quantum Electron. (1)

K. Onohara, “Soft-decision-based forward error correction for 100 Gb/s transport systems,” J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1258–1267, 2010.

J. Solid-State Circuits (1)

O. Agazzi, “A 90 nm CMOS DSP MLSD transceiver with integrated AFE for electronic dispersion compensation of multi-mode optical fibers at 10Gb/s,” J. Solid-State Circuits, vol. 43, no. 12, pp. 2939–2957, 2008.

Opt. Internetworking Forum (2)

B. Smith, J. Riani, A. Farhood, and S. Bhoja, “16QAM DSP & FEC proposal for 400G-ZR,” Opt. Internetworking Forum, 2017, OIF2017.200.02.

B. Zhang and K. Kota, “800ZR reference links,” Opt. Internetworking Forum, 2020, OIF2020.472.01.

Photon. J. (1)

I. Djordjevic, L. Xu, and T. Wang, “Reverse concatenated coded modulation for high-speed optical communication,” Photon. J., vol. 2, no. 6, pp. 1034–1039, 2010.

Trans. Commun. (3)

S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” Trans. Commun., vol. 57, no. 1, pp. 84–93, 2009.

L. Zhang, S. Lin, K. Abdel-Ghaffar, Z. Ding, and B. Zhou, “Quasi-Cyclic LDPC codes on cyclic subgroups of finite fields,” Trans. Commun., vol. 59, no. 9, pp. 2330–2336, 2011.

J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

Other (35)

F. Buchali, A. Klekamp, L. Schmalen, and T. Drenski, “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper M2A.1, pp. 1–3.

I. Djordjevic, “Advanced coded modulation for ultrahigh speed optical transmission,” in Proc. Opt. Fiber Commun., San Francisco, CA, USA, 2014, Paper W3J.4, pp. 1–41.

Digital Video Broadcasting, ETSI EN Standard 302 307, Rev. 1.2.1, 2009.

F. Kschischang, “Introduction to forward error correction,” in Proc. Opt. Fiber Commun., San Francisco, USA, 2017, p. SC390.

H. Zhang, B. Jiao, Y. Liao, and G. Zhang, “PAM4 signaling for 56G serial link applications – A tutorial,” Design Con, Santa Clara, CA, USA, 2016, [Online]. Available: https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf

S. Bhoja, V. Parthasarathy, and Z. Wang, “FEC codes for 400 Gbps 802.3bs,” IEEE P802.3bs 200 GbE & 400 GbE Task Force, 2014. [Online]. Available: https://www.ieee802.org/3/bs/public/14_11/parthasarathy_3bs_01a_1114.pdf

R. Nagarajan, C. Doerr, and F. Kish, “Semiconductor photonic integrated circuit transmitters and receivers,” in Opt. Fiber Telecommun., vol. VIA I. Kaminow, T. Li and A. Willner, ed.s., New York, NY, USA: Elsevier, 2013, pp. 25–98.

R. Nagarajan and M. Filer, “10. Silicon photonics based PAM4, DWDM datacenter interconnects,” in Datacenter Connectivity Technologies: Principles and Practice, vol. 1, F. Chang, ed., Denmark: River Publishers, 2018, pp. 405–430.

A. Castrillón, “First real-time demonstration of probabilistic shaping 400G transmission enabling high-performance pluggable module applications,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Paper MG1.3, pp. 1–2.

K. Sugihara, “A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s,” in Proc. Opt. Fiber Commun., Anaheim, CA, USA, 2013, Paper OM2B.4, pp. 1–3.

K. Liu, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: Construction and rank analysis of their parity-check matrices,” in Proc. Inf. Theory Appl. Workshop, San Diego, CA, USA, 2012, pp. 227–233.

D. Chang, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, Paper OW1H.4, pp. 1–3.

L. Nelson, “WDM performance and multiple-path interference tolerance of a real-time 120 Gbps Pol-Mux QPSK transceiver with soft decision FEC,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

D. Morero, M. Castrillon, F. Ramos, T. Goette, O. Agazzi, and M. Hueda, “Non-Concatenated FEC codes for ultra-high speed optical transport networks,” in Proc. GLOBECOM, Houston, TX, USA, 2011, pp. 1–5.

Y. Miyata, K. Kubo, K. Onohara, W. Matsumoto, H. Yoshida, and T. Mizuochi, “UEP-BCH product code based hard-decision FEC for 100 Gb/s optical transport networks,” in Proc. Opt. Fiber Commun., Los Angeles, CA, USA, 2012, pp. 1–3.

K. Onohara and T. Mizuochi, “Forward error correction: A powerful and indispensable technology for ultra high-speed transmission,” in Proc. SubOptic Conf., Yokohama, Japan, 2010, Tutorial 5.

D. Crivelli, H. Carrer, and M. Hueda, “Adaptive digital equalization in the presence of chromatic dispersion PMD and phase noise in coherent fiber optic systems,” in Proc. Global Telecom. Conf. (GLOBECOM), 2004, vol. 4, pp. 2545–2551.

T. Kupfer, A. Bisplinghof, T. Duthel, C. Fludger, and S. Langenbach, “Optimizing power consumption of a coherent DSP for metro and data center interconnects,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, Art. no. .

P. Winzer, S. Chandrasekhar, and X. Liu, “Modulation formats and receiver concepts for optical transmission systems,” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2012, Art. no. SC105.

I. Lyubomirsky, “OSNR link budget methodology,” in Proc. IEEE 802.3cn Ad-Hoc Meet., 2018. [Online]. Available: https://www.ieee802.org/3/cn/public/adhoc/18_1025/lyubomirsky_3cn_01_181025.pdf

K. Roberts and I. Roberts, “DSP: A disruptive technology for optical transceivers,” in Proc. 35th Eur. Conf. Opt. Commun.,Vienna, Austria, 2009, pp. 1–4.

K. Gopalakrishnan, “A 40/50/100Gb/s PAM-4 ethernet transceiver in 28nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, USA, 2016, pp. 62–63.

S. Bhoja, “PAM4 signaling for intra-data center and data center to data center connectivity (DCI),” in Proc. Opt. Fiber Commun., Los Angeles, USA, 2017, pp. 1–54.

R. Nagarajan, “Pluggable coherent transport modules for datacenter interconnects,” in Proc. IEEE Summer Top. Mtg. (V irtual Conf.), 2020, Art. no. .

R. Nagarajan, “Small form factor modules for coherent optical interconnects,” in Proc. IEEE Photon. Conf. (Virtual Conf.), 2020, Art. no. .

High-Speed Ethernet Optics, 10th ed., Eugene, OR, USA: LightCounting, 2019, pp. 8.

S. Wilkinson and A. Schmitt, “Transport applications report (2Q20),” Cignal AI, Boston, MA, USA, 2020.

R. Chopra, “Looking beyond 400G – A system vendor perspective,” IEEE 802.3 Beyond 400 Gb/s Ethernet Study Group, 2021, [Online]. Available: https://www.ieee802.org/3/B400G/public/21_02/chopra_b400g_01_210208.pdf

Implementation Agreement 400ZR, Optical Internetworking Forum, Fremont, CA USA, OIF-400ZR-01.0, 2020.

R. Nagarajan and I. Lyubomirsky, “Next-Gen data center interconnects: The race to 800G,” Consortium for On-Board Optics webcast, 2021, [Online]. Available: https://www.onboardoptics.org/the-race-to-800g-inphi

CFP Multi-Source Agreement (MSA), [Online]. Available: http://www.cfp-msa.org/

F. Frey, R. Elschner, and J. Fischer, “Estimation of trends for coherent DSP ASIC power dissipation for different bitrates and transmission reaches,” in Proc. Photonic Netw.; 18. ITG-Symp., Leipzig, Germany, 2017, pp. 1–8.

R. Nagarajan, “Datacenter interconnect systems with coherent detection (Tutorial),” in Proc. Fibre-Opt. Cable, San Diego, USA, 2019, Art. no. .

C. Fludger, “Performance orientated DSP design for flexible coherent transmission (Tutorial),” in Proc. Opt. Fiber Commun., San Diego, CA, USA, 2020, Art. no. .

I. Lyubomirsky, “Coherent vs. direct detection for next generation intra-datacenter optical interconnects,” in Proc. IEEE Summer Top. Mtg. (Virtual Conf.), 2020, Art. no. .

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved