Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 39,
  • Issue 3,
  • pp. 787-794
  • (2021)

Wide-Band Inline-Amplified WDM Transmission Using PPLN-Based Optical Parametric Amplifier

Open Access Open Access

Abstract

This article proposes an optical parametric amplifier (OPA), as an inline-repeater, using a periodically-poled-LiNbO3 (PPLN) waveguide with over-10-THz amplification bandwidth, and also presents wide-band wavelength-division-multiplexing (WDM) inline-amplified transmission with the OPA. Our PPLN-based OPA is polarization-independent and has a spectrally efficient configuration by filtering phase-conjugated signals (idlers). We implemented our PPLN-based OPA with half its ideal configuration with an over-10-THz amplification bandwidth because of the limited number of PPLN waveguides. The implemented OPA had 5.125-THz amplification bandwidth, gain of beyond 15 dB, and noise figure of less than 5.1-dB. The gain excludes the 5.6-dB loss of an idler rejection filter employed in the transmission experiment so that the implemented OPA can compensate 9.5-dB link loss of transmission fibers and optical components. A 3 × 30.8-km inline-amplified transmission with 41-channel 800-Gbps WDM signal in 125-GHz spacing was successfully demonstrated using our PPLN-based OPA as an inline-repeater. The results also indicate that the OPA's amplification bandwidth can potentially be extended to 10.25 THz.

PDF Article

References

  • View by:

  1. H. Masuda, “20.4-Tb/s (204 × 111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2007, Paper PDP20.
  2. M. Ionescu, “74.38 Tb/s transmission over 6300 km single mode fiber with hybrid EDFA/Raman amplifiers,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper Tu3F.3.
  3. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.
  4. K. Fukuchi, “10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2001, Paper PD24.
  5. F. Hamaoka, “Ultra-wideband WDM transmission in S-, C-, and L-Bands using signal power optimization scheme,” IEEE J. Lightw. Technol., vol. 37, no. 8, pp. 1764–1771, 2019.
  6. T. Kato, “Real-time transmission of 240×200-Gb/s signal in S+C+L triple-band WDM without S- or L-band transceivers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2019, Paper PD.1.7.
  7. J. Renaudier, “First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband semiconductor optical amplifiers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2017, Paper Th.PDP.A.2.
  8. M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.
  9. Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.
  10. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett., vol. 21, no. 8, pp. 573–575, 1996.
  11. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.
  12. G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.
  13. C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.
  14. T. Torounidis and P. A. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 650–652, 2007.
  15. J. Yamawaku, “Low-crosstalk 103 channel × 10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched linbo3 waveguide,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 4, pp. 521–528, 2006.
  16. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.
  17. T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.
  18. Z. Lali-Dastjerdi, “Demonstration of cascaded in-line single-pump fiber optical parametric amplifiers in recirculating loop transmission,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2012, Paper Mo.2.C.5.
  19. M. F. C. Stephens, M. Tan, V. Gordienko, P. Harper, and N. J. Doran, “In-line and cascaded DWDM transmission using a 15 dB net-gain polarization-insensitive fiber optical parametric amplifier,” Opt. Express, vol. 25, no. 20, pp. 24312–24325, 2017.
  20. T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.
  21. T. Umeki, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express, vol. 24, no. 15, pp. 16945–16951, 2016.
  22. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.
  23. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.
  24. T. Kobayashi, “Wideband Inline-amplified WDM transmission using PPLN-based OPA with over-10-thz bandwidth,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4C.7.
  25. T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.
  26. G. S. He, “Nonlinear polarization of an optical medium,” in Nonlinear Optics and Photonics. New York, NY, USA: Oxford Univ. Press, 2014, pp. 18–32.
  27. F. Hamaoka, “120-GBaud 32QAM signal generation using ultra-broadband electrical bandwidth doubler,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M2H.6.
  28. M. Nagatani, “A beyond-1-Tb/s coherent optical transmitter front-end based on 110-GHz-bandwidth 2:1 analog multiplexer in 250-nm InP DHBT,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2301–2315, 2020.
  29. M. Nakamura, “Entropy and symbol-rate optimized 120 GBaud PS-36QAM signal transmission over 2400 km at net-rate of 800 Gbps/λ,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper M4K.3.
  30. A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.
  31. D. J. Elson, “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19529–19537, 2017.
  32. T. Kobayashi, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .
  33. M. Nakamura, “1.04 Tbps/carrier probabilistically shaped PDM-64QAM WDM transmission over 240 km based on electrical spectrum synthesis,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .

2020 (1)

M. Nagatani, “A beyond-1-Tb/s coherent optical transmitter front-end based on 110-GHz-bandwidth 2:1 analog multiplexer in 250-nm InP DHBT,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2301–2315, 2020.

2019 (1)

F. Hamaoka, “Ultra-wideband WDM transmission in S-, C-, and L-Bands using signal power optimization scheme,” IEEE J. Lightw. Technol., vol. 37, no. 8, pp. 1764–1771, 2019.

2017 (2)

2016 (1)

2012 (1)

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

2010 (2)

G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.

2007 (1)

T. Torounidis and P. A. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 650–652, 2007.

2006 (2)

J. Yamawaku, “Low-crosstalk 103 channel × 10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched linbo3 waveguide,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 4, pp. 521–528, 2006.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.

1999 (1)

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

1997 (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.

1996 (1)

Abe, M.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

Andrekson, P. A.

T. Torounidis and P. A. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 650–652, 2007.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.

Brener, I.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

Chiang, T.-K.

Chou, M. H.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

Doran, N.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Doran, N. J.

Elson, D. J.

Enbutsu, K.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Fejer, M. M.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

Ferreira, F.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Forysiak, W.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Fukuchi, K.

K. Fukuchi, “10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2001, Paper PD24.

Gallo, K.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.

Gaur, C. B.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Gordeinko, V.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Gordienko, V.

Hamaoka, F.

F. Hamaoka, “Ultra-wideband WDM transmission in S-, C-, and L-Bands using signal power optimization scheme,” IEEE J. Lightw. Technol., vol. 37, no. 8, pp. 1764–1771, 2019.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

F. Hamaoka, “120-GBaud 32QAM signal generation using ultra-broadband electrical bandwidth doubler,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M2H.6.

Harper, P.

M. F. C. Stephens, M. Tan, V. Gordienko, P. Harper, and N. J. Doran, “In-line and cascaded DWDM transmission using a 15 dB net-gain polarization-insensitive fiber optical parametric amplifier,” Opt. Express, vol. 25, no. 20, pp. 24312–24325, 2017.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

He, G. S.

G. S. He, “Nonlinear polarization of an optical medium,” in Nonlinear Optics and Photonics. New York, NY, USA: Oxford Univ. Press, 2014, pp. 18–32.

Horikoshi, K.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

Ionescu, M.

M. Ionescu, “74.38 Tb/s transmission over 6300 km single mode fiber with hybrid EDFA/Raman amplifiers,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper Tu3F.3.

Iqbal, A.

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

Iqbal, M. A.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

Ishihara, K.

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

Kagi, N.

Kasahara, R.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Kashiwazaki, T.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Kato, T.

T. Kato, “Real-time transmission of 240×200-Gb/s signal in S+C+L triple-band WDM without S- or L-band transceivers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2019, Paper PD.1.7.

Kazama, T.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Kazovsky, L. G.

Kisaka, Y.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

Kobayashi, T.

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

T. Kobayashi, “Wideband Inline-amplified WDM transmission using PPLN-based OPA with over-10-thz bandwidth,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4C.7.

T. Kobayashi, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .

Krzczanowicz, L.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

Lali-Dastjerdi, Z.

Z. Lali-Dastjerdi, “Demonstration of cascaded in-line single-pump fiber optical parametric amplifiers in recirculating loop transmission,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2012, Paper Mo.2.C.5.

Lu, G.-W.

G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.

Marhic, M. E.

G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.

M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett., vol. 21, no. 8, pp. 573–575, 1996.

Masuda, H.

H. Masuda, “20.4-Tb/s (204 × 111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2007, Paper PDP20.

Matsushita, A.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

Matsuura, A.

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

Miyamoto, Y.

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

Miyazaki, T.

G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.

Nagatani, M.

M. Nagatani, “A beyond-1-Tb/s coherent optical transmitter front-end based on 110-GHz-bandwidth 2:1 analog multiplexer in 250-nm InP DHBT,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2301–2315, 2020.

Nakamura, M.

M. Nakamura, “Entropy and symbol-rate optimized 120 GBaud PS-36QAM signal transmission over 2400 km at net-rate of 800 Gbps/λ,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper M4K.3.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

M. Nakamura, “1.04 Tbps/carrier probabilistically shaped PDM-64QAM WDM transmission over 240 km based on electrical spectrum synthesis,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .

Okamoto, S.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

Olsson, B.-E.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.

Ono, H.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

Parameswaran, K. R.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

Phillips, I.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

Renaudier, J.

J. Renaudier, “First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband semiconductor optical amplifiers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2017, Paper Th.PDP.A.2.

Richardson, D.

Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.

Sahu, J.

Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.

Sano, A.

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.

Stephens, M. F. C.

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Takenouchi, H.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

Tan, M.

Thipparapu, N.

Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.

Torounidis, T.

T. Torounidis and P. A. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 650–652, 2007.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.

Umeki, T.

T. Umeki, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express, vol. 24, no. 15, pp. 16945–16951, 2016.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Wang, Y.

Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.

Yamawaku, J.

J. Yamawaku, “Low-crosstalk 103 channel × 10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched linbo3 waveguide,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 4, pp. 521–528, 2006.

Appl. Phys. Lett. (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1020–1022, 1997.

Electron. Lett. (2)

G.-W. Lu, M. E. Marhic, and T. Miyazaki, “Burst-mode amplification of dynamic optical packets using fibre optical parametric amplifier in optical packet networks,” Electron. Lett., vol. 46, no. 11, pp. 778–780, 2010.

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and bandwidth enhancement of difference frequency generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett., vol. 35, no. 12, pp. 978–980, 1999.

IEEE J. Lightw. Technol. (2)

T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, and K. Ishihara, “Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone,” IEEE J. Lightw. Technol., vol. 30, no. 24, pp. 3805–3815, 2012.

F. Hamaoka, “Ultra-wideband WDM transmission in S-, C-, and L-Bands using signal power optimization scheme,” IEEE J. Lightw. Technol., vol. 37, no. 8, pp. 1764–1771, 2019.

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron., vol. 46, no. 8, pp. 1206–1213, 2010.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yamawaku, “Low-crosstalk 103 channel × 10 Gb/s (1.03 Tb/s) wavelength conversion with a quasi-phase-matched linbo3 waveguide,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 4, pp. 521–528, 2006.

IEEE J. Solid-State Circuits (1)

M. Nagatani, “A beyond-1-Tb/s coherent optical transmitter front-end based on 110-GHz-bandwidth 2:1 analog multiplexer in 250-nm InP DHBT,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2301–2315, 2020.

IEEE Photon. Technol. Lett. (2)

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70-dB gain,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1194–1196, 2006.

T. Torounidis and P. A. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 650–652, 2007.

Opt. Express (3)

Opt. Lett. (1)

Other (19)

C. B. Gaur, F. Ferreira, V. Gordeinko, A. Iqbal, W. Forysiak, and N. Doran, “Comparison of erbium, Raman and parametric optical fiber amplifiers for burst traffic in extended PON,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W4B.3.

T. Kashiwazaki, K. Enbutsu, T. Kazama, O. Tadanaga, T. Umeki, and R. Kasahara, “Over-30-dB phase-sensitive amplification using a fiber-pigtailed PPLN waveguide module,” in Proc. Nonlinear Opt. (NLO), 2019, Paper NW3A.2.

Z. Lali-Dastjerdi, “Demonstration of cascaded in-line single-pump fiber optical parametric amplifiers in recirculating loop transmission,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2012, Paper Mo.2.C.5.

T. Kato, “Real-time transmission of 240×200-Gb/s signal in S+C+L triple-band WDM without S- or L-band transceivers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2019, Paper PD.1.7.

J. Renaudier, “First 100-nm continuous-band WDM transmission system with 115Tb/s transport over 100km using novel ultra-wideband semiconductor optical amplifiers,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2017, Paper Th.PDP.A.2.

M. A. Iqbal, L. Krzczanowicz, I. Phillips, P. Harper, and W. Forysiak, “150nm SCL-Band transmission through 70km SMF using Ultra-wideband Dual-stage discrete Raman amplifier,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper W3E.4.

Y. Wang, N. Thipparapu, D. Richardson, and J. Sahu, “Broadband bismuth-doped fiber amplifier with a record 115-nm bandwidth in the O and E bands,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4B.1.

K. Fukuchi, “10.92-Tb/s (273 × 40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2001, Paper PD24.

H. Masuda, “20.4-Tb/s (204 × 111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2007, Paper PDP20.

M. Ionescu, “74.38 Tb/s transmission over 6300 km single mode fiber with hybrid EDFA/Raman amplifiers,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper Tu3F.3.

T. Kobayashi, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .

M. Nakamura, “1.04 Tbps/carrier probabilistically shaped PDM-64QAM WDM transmission over 240 km based on electrical spectrum synthesis,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, .

T. Kazama, T. Umeki, M. Abe, K. Enbutsu, Y. Miyamoto, and H. Takenouchi, “Low-noise phase-sensitive amplifier for guard-band-less 16-channel DWDM signal using PPLN waveguides,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2016, Paper M3D.1.

M. Nakamura, “Entropy and symbol-rate optimized 120 GBaud PS-36QAM signal transmission over 2400 km at net-rate of 800 Gbps/λ,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper M4K.3.

A. Matsushita, M. Nakamura, K. Horikoshi, S. Okamoto, F. Hamaoka, and Y. Kisaka, “64-GBd PDM-256QAM and 92-GBd PDM-64QAM signal generation using precise-digital-calibration aided by optical-equalization,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper W4B.2.

T. Kobayashi, “Wideband Inline-amplified WDM transmission using PPLN-based OPA with over-10-thz bandwidth,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2020, Paper Th4C.7.

T. Umeki, T. Kazama, H. Ono, Y. Miyamoto, and H. Takenouchi, “Spectrally efficient optical phase conjugation based on complementary spectral inversion for nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015, Paper We2.6.2.

G. S. He, “Nonlinear polarization of an optical medium,” in Nonlinear Optics and Photonics. New York, NY, USA: Oxford Univ. Press, 2014, pp. 18–32.

F. Hamaoka, “120-GBaud 32QAM signal generation using ultra-broadband electrical bandwidth doubler,” in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, Paper M2H.6.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved