Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 10,
  • pp. 3149-3162
  • (2022)

Bridging the Terahertz Gap: Photonics-Assisted Free-Space Communications From the Submillimeter-Wave to the Mid-Infrared

Open Access Open Access

Abstract

Since about one and half centuries ago, at the dawn of modern communications, the radio and the optics have been two separate electromagnetic spectrum regions to carry data. Differentiated by their generation/detection methods and propagation properties, the two paths have evolved almost independently until today. The optical technologies dominate the long-distance and high-speed terrestrial wireline communications through fiber-optic telecom systems, whereas the radio technologies have mainly dominated the short- to medium-range wireless scenarios. Now, these two separate counterparts are both facing a sign of saturation in their respective roadmap horizons, particularly in the segment of free-space communications. The optical technologies are extending into the mid-wave and long-wave infrared (MWIR and LWIR) regimes to achieve better propagation performance through the dynamic atmospheric channels. Radio technologies strive for higher frequencies like the millimeter-wave (MMW) and sub-terahertz (sub-THz) to gain broader bandwidth. The boundary between the two is becoming blurred and intercrossed. During the past few years, we witnessed technological breakthroughs in free-space transmission supporting very high data rates, many achieved with the assistance of photonics. This paper focuses on such photonics-assisted free-space communication technologies in both the lower and upper sides of the THz gap and provides a detailed review of recent research and development activities on some of the key enabling technologies. Our recent experimental demonstrations of high-speed free-space transmissions in both frequency regions are also presented as examples to show the system requirements for device characteristics and digital signal processing (DSP) performance.

PDF Article
More Like This
Terahertz wireless communications based on photonics technologies

Tadao Nagatsuma, Shogo Horiguchi, Yusuke Minamikata, Yasuyuki Yoshimizu, Shintaro Hisatake, Shigeru Kuwano, Naoto Yoshimoto, Jun Terada, and Hiroyuki Takahashi
Opt. Express 21(20) 23736-23747 (2013)

Interband cascade technology for energy-efficient mid-infrared free-space communication

Pierre Didier, Hedwig Knötig, Olivier Spitz, Laurent Cerutti, Anna Lardschneider, Elie Awwad, Daniel Diaz-Thomas, A. N. Baranov, Robert Weih, Johannes Koeth, Benedikt Schwarz, and Frédéric Grillot
Photon. Res. 11(4) 582-590 (2023)

Reconfigurable photonics-based millimeter wave signal aggregation for non-orthogonal multiple access

Amr M. Ragheb, Hussein E. Seleem, Ahmed S. Almaiman, and Saleh A. Alshebeili
Opt. Express 30(10) 16812-16826 (2022)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.