Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 40,
  • Issue 16,
  • pp. 5575-5582
  • (2022)

Octave-Spanning Optical Frequency Comb Generation Using a Directly-Modulated Microlaser Source

Not Accessible

Your library or personal account may give you access

Abstract

A coherent optical frequency comb with a gigahertz line spacing is important in diverse fields, such as calibration of astronomical spectrographs and wavelength division multiplexing optical communications. In this paper, we realize octave-spanning 10-GHz optical combs using a directly-modulated 1.55 μm microlaser as a seeding source. A 6.4 ps transform-limited pulse is successfully generated from the directly-modulated laser output through optimal chirp compensation in a fiber. Moreover, after amplifying by an EDFA, the optical pulse width is further reduced to 140 fs by combing the self-phase modulation effect and the anomalous group velocity dispersion in commercial fibers. Finally, a coherent optical comb spanning from 900-2400 nm is produced in a home-made fluorotellurite fiber using the 140-fs pulse boosted to a few Watts as a seeding source. The experimental results demonstrate that optical combs generated from the directly-modulated microlaser have the potential for a fully stabilized frequency comb.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved